二次函数解析式的确定.ppt

二次函数解析式的确定.ppt

ID:50086964

大小:273.50 KB

页数:12页

时间:2020-03-04

二次函数解析式的确定.ppt_第1页
二次函数解析式的确定.ppt_第2页
二次函数解析式的确定.ppt_第3页
二次函数解析式的确定.ppt_第4页
二次函数解析式的确定.ppt_第5页
资源描述:

《二次函数解析式的确定.ppt》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、用待定系数法求二次函数的解析式yxo课 前 复 习例 题 选 讲课 堂 小 结课 堂 练 习课 前 复 习思考二次函数解析式有哪几种表达式?一般式:y=ax2+bx+c顶点式:y=a(x-h)2+k例题封面交点式:y=a(x-x1)(x-x2)例1.如图,一位运动员在距篮下4m处起跳投篮,球运行的路线是抛物线,当球运行的水平距离是2.5m时,球达到最大高度3.5m,已知篮筐中心到地面的距离3.05m,问球出手时离地面多高时才能中?球的出手点A的横坐标为-2.5,将x=-2.5代入抛物线表达式得y=2.25,即当出手高度为2.25m时,才能投中。xy2.5m4m

2、3.05ABCO3.5解:建立如图所示的直角坐标系,则球的最高点和球篮的坐标分别为B(0,3.5),C(1.5,3.05).3.5=c3.05=1.52a+c设所求的二次函数的表达式为y=ax2+c.将点B和点C的坐标代入,得解得a=-02c=3.5∴该抛物线的表达式为y=-0.2x2+3.5例 题 选 讲一般式:y=ax2+bx+c交点式:y=a(x-x1)(x-x2)顶点式:y=a(x-h)2+k解:设所求的二次函数为y=ax2+bx+c由条件得:c=5a-b+5=10a+b+5=4解方程得:因此:所求二次函数是:a=2,b=-3,c=5y=2x2-3x+

3、5已知一个二次函数的图象过点(-1,10)、(1,4)、(0,5)三点,求这个函数的解析式?oxy例1例题封面例 题 选 讲解:设所求的二次函数为y=a(x+1)2-3由条件得:已知抛物线的顶点为(-1,-3),与y轴交点为(0,-5)求抛物线的解析式?yox点(0,-5)在抛物线上a-3=-5,得a=-2故所求的抛物线解析式为y=-2(x+1)2-3即:y=-2x2-4x-5一般式:y=ax2+bx+c交点式:y=a(x-x1)(x-x2)顶点式:y=a(x-h)2+k例2例题封面例 题 选 讲解:设所求的二次函数为y=a(x+1)(x-1)由条件得:已知抛

4、物线与X轴交于A(-1,0),B(1,0)并经过点M(0,1),求抛物线的解析式?yox点M(0,1)在抛物线上所以:a(0+1)(0-1)=1得:a=-1故所求的抛物线解析式为y=-(x+1)(x-1)即:y=-x2+1一般式:y=ax2+bx+c交点式:y=a(x-x1)(x-x2)顶点式:y=a(x-h)2+k例题例3封面例 题 选 讲有一个抛物线形的立交桥拱,这个桥拱的最大高度为16m,跨度为40m.现把它的图形放在坐标系里(如图所示),求抛物线的解析式.例4设抛物线的解析式为y=ax2+bx+c,解:根据题意可知抛物线经过(0,0),(20,16)和

5、(40,0)三点可得方程组通过利用给定的条件列出a、b、c的三元一次方程组,求出a、b、c的值,从而确定函数的解析式.过程较繁杂,评价封面练习例 题 选 讲有一个抛物线形的立交桥拱,这个桥拱的最大高度为16m,跨度为40m.现把它的图形放在坐标系里(如图所示),求抛物线的解析式.例4设抛物线为y=a(x-20)2+16解:根据题意可知∵点(0,0)在抛物线上,通过利用条件中的顶点和过愿点选用顶点式求解,方法比较灵活评价∴所求抛物线解析式为封面练习例 题 选 讲有一个抛物线形的立交桥拱,这个桥拱的最大高度为16m,跨度为40m.现把它的图形放在坐标系里(如图所示

6、),求抛物线的解析式.例4设抛物线为y=ax(x-40)解:根据题意可知∵点(20,16)在抛物线上,选用两根式求解,方法灵活巧妙,过程也较简捷评价封面练习课 堂 练 习已知抛物线与X轴的两个交点的横坐标是  、 ,与Y轴交点的纵坐标是,求这个抛物线的解析式?32121、封面小结2.已知二次函数中,函数与自变量的部分对应值如下表:(1)求该二次函数的关系式;(2)当为何值时,有最小值,最小值是多少?x…-101234…y…1052125…课 堂 小 结求二次函数解析式的一般方法:已知图象上三点或三对的对应值,通常选择一般式已知图象的顶点坐标*对称轴和最值)通常

7、选择顶点式已知图象与x轴的两个交点的横x1、x2,通常选择两根式yxo封面确定二次函数的解析式时,应该根据条件的特点,恰当地选用一种函数表达式,

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。