资源描述:
《北师大版高中数学选修2-2第三章《导数应用》导数在实际问题中的应用(一) 课件.ppt》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库。
1、金太阳新课标资源网wx.jtyjy.com北师大版高中数学选修2-2第三章《导数应用》导数在实际问题中的应用(一)一、教学目标:1、知识与技能:⑴让学生掌握在实际生活中问题的求解方法;⑵会利用导数求解最值。2、过程与方法:通过分析具体实例,经历由实际问题抽象为数学问题的过程。3、情感、态度与价值观:让学生感悟由具体到抽象,由特殊到一般的思想方法二、教学重点:函数建模过程教学难点:函数建模过程三、教学方法:探究归纳,讲练结合四、教学过程1、实际问题中的应用.在日常生活、生产和科研中,常常会遇到求函数的最大(小)值的问题.建立目标函数,然后利用导数的方法
2、求最值是求解这类问题常见的解题思路.在建立目标函数时,一定要注意确定函数的定义域.在实际问题中,有时会遇到函数在区间内只有一个点使的情形,如果函数在这个点有极大(小)值,那么不与端点值比较,也可以知道这就是最大(小)值.这里所说的也适用于开区间或无穷区间.满足上述情况的函数我们称之为“单峰函数”.3、求最大(最小)值应用题的一般方法(1)分析实际问题中各量之间的关系,把实际问题化为数学问题,建立函数关系式,这是关键一步。(2)确定函数定义域,并求出极值点。(3)比较各极值与定义域端点函数的大小,结合实际,确定最值或最值点。2、实际应用问题的表现形式,
3、常常不是以纯数学模式反映出来。首先,通过审题,认识问题的背景,抽象出问题的实质。其次,建立相应的数学模型,将应用问题转化为数学问题,再解。6060解:设箱底边长为xcm,箱子容积为V=x2h例1在边长为60cm的正方形铁皮的四角切去相等的正方形,再把它的边沿虚线折起,做成一个无盖的方底箱子,箱底边长为多少时,箱子容积最大?最大容积是多少?则箱高xxV´=60x-3x²/2令V´=0,得x=40,x=0(舍去)得V(40)=16000答:当箱底边长为x=40时,箱子容积最大,最大值为16000cm3在实际问题中,如果函数f(x)在某区间内只有一个x0使
4、f´(x0)=0,而且从实际问题本身又可以知道函数在这点有极大(小)值,那么不与端点比较,f(x0)就是所求的最大值或最小值.(所说区间的也适用于开区间或无穷区间)hR例2.要生产一批带盖的圆柱形铁桶,要求每个铁桶的容积为定值V,怎样设计桶的底面半径才能使材料最省?此时高与底面半径比为多少?解:设桶底面半径为R,因为S(R)只有一个极值,所以它是最小值。答:当罐高与底的直径想等时,所用材料最省。例3.已知某商品生产成本C与产量q的函数关系式为C=100+4q,价格p与产量q的函数关系式为求产量q为何值时,利润L最大。分析:利润L等于收入R减去成本C,
5、而收入R等于产量乘价格.由此可得出利润L与产量q的函数关系式,再用导数求最大利润.求得唯一的极值点因为L只有一个极值点,所以它是最大值.答:产量为84时,利润L最大.xy练习1:如图,在二次函数f(x)=4x-x2的图象与x轴所围成的图形中有一个内接矩形ABCD,求这个矩形的最大面积.解:设B(x,0)(06、AB
7、=4x-x2,
8、BC
9、=2(2-x).故矩形ABCD的面积为:S(x)=
10、AB
11、
12、BC
13、=2x3-12x2+16x(014、燃料费和它的速度的立方成正比。已知在速度为10km/h时,燃料费是6元/h。而其他与速度无关的费用为96元/h。问以何种速度航行时。能使行驶每公里的费用总和最少?3、如图,铁路线上AB段长100km,工厂C到铁路的距离CA=20km.现在要在AB上某一处D,向C修一条公路.已知铁路每吨千米与公路每吨千米的运费之比为3:5.为了使原料从供应站B运到工厂C的运费最省,D应修在何处?BDAC解:设DA=xkm,那么DB=(100-x)km,CD=km.又设铁路上每吨千米的运费为3t元,则公路上每吨千米的运费为5t元.这样,每吨原料从供应站B运到工厂C的总运
15、费为令,在的范围内有唯一解x=15.所以,当x=15(km),即D点选在距A点15千米时,总运费最省.注:可以进一步讨论,当AB的距离大于15千米时,要找的最优点总在距A点15千米的D点处;当AB之间的距离不超过15千米时,所选D点与B点重合.练习4:已知圆锥的底面半径为R,高为H,求内接于这个圆锥体并且体积最大的圆柱体的高h.答:设圆柱底面半径为r,可得r=R(H-h)/H.易得当h=H/3时,圆柱体的体积最大.例4、如图,扇形AOB中,半径0A=1,∠AOB=900,在OA的延长线上有一动点C,过C作CD与弧AB相切于点E,且与过点B所作的OB的
16、垂线交于点D,当点C在什么位置时,直角梯形OCDB的面积最小?OBDECA注:在实际问题中,若函数在区间内只