欢迎来到天天文库
浏览记录
ID:49993855
大小:225.50 KB
页数:13页
时间:2020-03-07
《不等式的区间表示.ppt》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库。
1、不等式的区间表示不等式的解集在含有未知数的不等式中,能使不等式成立的未知数值的全体所构成的集合,叫做不等式的解集,一般可用集合的描述法来表示。一、集合的描述法例:不等式的解集可以表示为:二、用区间表示不等式的解集区间:设a、b∈R,且a<b:(1)闭区间满足不等式a≤x≤b的所有实数的集合,叫做由a到b的闭区间,记为[a,b]。例:用区间表示集合{x
2、-1≤x≤3},并在数轴上表示出来。-13x-1x3-1xx-1-1x-13x-1(2)开区间满足不等式a3、1,3)-13x(3)半开半闭区间满足a≤x<b或a<x≤b的所有实数集合,都叫做半开半闭区间,分别记作[a,b)或(a,b]。练习:用区间表示-1≤x<3,-1<x≤3,并在数轴上表示出来。注:(1)a与b(a<b)分别叫做区间的左端点和右端点,a必须写在区间左端,b写在右端。(2)数轴表示区间时,属于这个区间的实数所对应的端点,用实心点表示,不属于这个区间的实数所对应的端点,用空心点表示。(4)实数集R表示为符号“+∞”读作“正无穷大”“-∞”读作“负无穷大”①满足x≥a的全体实数,可记作[a,+∞)②满足x>a的全体实数,可记作(a,+∞)③满足x≤a的全体实数,可记作(-∞4、,a]④满足x5、种情形:(1)a、b∈R,a<b。(2)a∈R.
3、1,3)-13x(3)半开半闭区间满足a≤x<b或a<x≤b的所有实数集合,都叫做半开半闭区间,分别记作[a,b)或(a,b]。练习:用区间表示-1≤x<3,-1<x≤3,并在数轴上表示出来。注:(1)a与b(a<b)分别叫做区间的左端点和右端点,a必须写在区间左端,b写在右端。(2)数轴表示区间时,属于这个区间的实数所对应的端点,用实心点表示,不属于这个区间的实数所对应的端点,用空心点表示。(4)实数集R表示为符号“+∞”读作“正无穷大”“-∞”读作“负无穷大”①满足x≥a的全体实数,可记作[a,+∞)②满足x>a的全体实数,可记作(a,+∞)③满足x≤a的全体实数,可记作(-∞
4、,a]④满足x5、种情形:(1)a、b∈R,a<b。(2)a∈R.
5、种情形:(1)a、b∈R,a<b。(2)a∈R.
此文档下载收益归作者所有