欢迎来到天天文库
浏览记录
ID:49942278
大小:508.00 KB
页数:18页
时间:2020-03-04
《函数的综合应用.ppt》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、函数的综合应用一、选择题(每小题6分,共30分)1.(2013·青岛)已知矩形的面积为36cm2,相邻的两条边长为xcm和ycm,则y与x之间的函数图象大致是()A2.(2013·嘉兴)若一次函数y=ax+b(a≠0)的图象与x轴的交点坐标为(-2,0),则抛物线y=ax2+bx的对称轴为()A.直线x=1B.直线x=-2C.直线x=-1D.直线x=-4C3.(2014·咸宁)如图,双曲线y=mx与直线y=kx+b交于点M,N,并且点M的坐标为(1,3),点N的纵坐标为-1,根据图象信息可得关于x的方程mx=kx+b的解为()A.-3,1B.-3,3C.-1,1D.-
2、1,3A4.(2014·德州)图象中所反映的过程是:张强从家跑步去体育场,在那里锻炼了一阵后,又去早餐店吃早餐,然后散步走回家.其中x表示时间,y表示张强离家的距离.根据图象提供的信息,以下四个说法错误的是()A.体育场离张强家2.5千米B.张强在体育场锻炼了15分钟C.体育场离早餐店4千米D.张强从早餐店回家的平均速度是187千米/小时C5.某广场有一喷水池,水从地面喷出,如图,以水平面为x轴,出水点为原点,建立平面直角坐标系,水在空中划出的曲线是抛物线y=-x2+4x(单位:米)的一部分,则水喷出的最大高度是()A.4米B.3米C.2米D.1米A二、填空题(每小题
3、6分,共30分)6.(2014·安徽)某厂今年一月份新产品的研发资金为a元,以后每月新产品的研发资金与上月相比增长率都是x,则该厂今年三月份新产品的研发资金y(元)关于x的函数关系式为y=.a(1+x)27.(2014·苏州)如图,直线l与半径为4的⊙O相切于点A,P是⊙O上的一个动点(不与点A重合),过点P作PB⊥l,垂足为B,连接PA.设PA=x,PB=y,则(x-y)的最大值是____.28.(2014·长春)如图,在平面直角坐标系中,点A在第二象限,以A为顶点的抛物线经过原点,与x轴负半轴交于点B,对称轴为直线x=-2,点C在抛物线上,且位于点A,B之间(C不
4、与A,B重合).若△ABC的周长为a,则四边形AOBC的周长为____.(用含a的式子表示)a+49.(10分)(2014·湖州)已知某市2013年企业用水量x(吨)与该月应交的水费y(元)之间的函数关系如图.(1)当x≥50时,求y关于x的函数关系式;(2)若某企业2013年10月份的水费为620元,求该企业2013年10月份的用水量;由图可知,当y=620时,x>50,∴6x-100=620,解得x=120.答:该企业2013年10月份的用水量为120吨(3)为贯彻省委“五水共治”发展战略,鼓励企业节约用水,该市自2014年1月开始对月用水量超过80吨的企业加收污
5、水处理费,规定:若企业月用水量x超过80吨,则除按2013年收费标准收取水费外,超过80吨部分每吨另加收x20元,若某企业2014年3月份的水费和污水处理费共600元,求这个企业该月的用水量.10.(10分)(2013·哈尔滨)某水渠的横截面呈抛物线形,水面的宽为AB(单位:米),现以AB所在直线为x轴,以抛物线的对称轴为y轴建立如图所示的平面直角坐标系,设坐标原点为O,已知AB=8米,设抛物线解析式为y=ax2-4.(1)求a的值;(2)点C(-1,m)是抛物线上一点,点C关于原点O的对称点为点D,连接CD,BC,BD,求△BCD的面积.11.(10分)(2014·
6、鄂州)大学生小张利用暑假50天在一超市勤工俭学,被安排销售一款成本为40元/件的新型商品,此类新型商品在第x天的销售量p件与销售的天数x的关系如下表:x(天)123…50p(件)118116114…20销售单价q(元/件)与x满足:当1≤x<25时,q=x+60;当25≤x≤50时,q=40+1125x.(1)请分析表格中销售量p与x的关系,求出销售量p与x的函数关系;(2)求该超市销售该新商品第x天获得的利润y元关于x的函数关系式;(3)这50天中,该超市第几天获得利润最大?最大利润为多少?
此文档下载收益归作者所有