[2008IJCV]Robust object detection with interleaved categorization and segmentation.pdf

[2008IJCV]Robust object detection with interleaved categorization and segmentation.pdf

ID:49921964

大小:9.13 MB

页数:26页

时间:2020-03-05

[2008IJCV]Robust object detection with interleaved categorization and segmentation.pdf_第1页
[2008IJCV]Robust object detection with interleaved categorization and segmentation.pdf_第2页
[2008IJCV]Robust object detection with interleaved categorization and segmentation.pdf_第3页
[2008IJCV]Robust object detection with interleaved categorization and segmentation.pdf_第4页
[2008IJCV]Robust object detection with interleaved categorization and segmentation.pdf_第5页
资源描述:

《[2008IJCV]Robust object detection with interleaved categorization and segmentation.pdf》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、ndSubmissiontotheIJCVSpecialIssueonLearningforVisionandVisionforLearning,Sept.2005,2revisedversionAug.2007.RobustObjectDetectionwithInterleavedCategorizationandSegmentationBastianLeibe1,AlesLeonardisˇ2,andBerntSchiele3Abstract—Thispaperpresentsanovelmethodfordetectingtheobjectsinthefirstplaceandto

2、separatethemfromtheandlocalizingobjectsofavisualcategoryinclutteredreal-worldbackground.scenes.Ourapproachconsidersobjectcategorizationandfigure-Historically,thisstepoffigure-groundsegmentationhasgroundsegmentationastwointerleavedprocessesthatcloselylongbeenseenasanimportantandevennecessaryprecurso

3、rcollaboratetowardsacommongoal.Asshowninourwork,thetightcouplingbetweenthosetwoprocessesallowsthemtobenefitforobjectrecognition[45].Inthiscontext,segmentationisfromeachotherandimprovethecombinedperformance.mostlydefinedasadatadriven,thatisbottom-up,process.Thecorepartofourapproachisahighlyflexiblele

4、arnedrep-However,exceptforcaseswhereadditionalcuessuchasresentationforobjectshapethatcancombinetheinformationob-motionorstereocouldbeused,purelybottom-upapproachesservedondifferenttrainingexamplesinaprobabilisticextensionhavesofarbeenunabletoyieldfigure-groundsegmentationsoftheGeneralizedHoughTran

5、sform.Theresultingapproachcandetectcategoricalobjectsinnovelimagesandautomaticallyinferofsufficientqualityforobjectcategorization.Thisisalsodueaprobabilisticsegmentationfromtherecognitionresult.Thistothefactthatthenotionanddefinitionofwhatconstitutesansegmentationistheninturnusedtoagainimproverecog

6、nitionobjectislargelytask-specificandcannotbeansweredinanun-byallowingthesystemtofocusitseffortsonobjectpixelsandtoinformedway.Thegeneralfailuretoachievetask-independentdiscardmisleadinginfluencesfromthebackground.Moreover,segmentation,togetherwiththesuccessofappearance-basedtheinformationfromwhere

7、intheimageahypothesisdrawsitssupportisemployedinanMDLbasedhypothesisverificationmethodstoproviderecognitionresultswithoutpriorsegmenta-stagetoresolveambiguitiesbetweenoverlappinghypothesesandtion,hasledtotheseparationof

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。