欢迎来到天天文库
浏览记录
ID:49902273
大小:2.79 MB
页数:41页
时间:2020-03-03
《八年级数学第十八章《勾股定理》课件.ppt》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、八年级数学第十八章《勾股定理》——第一课时“勾股定理”长庆桥初中豆亚锐一、 教材分析(一)教材所处的地位这节课是九年制义务教育课程人教版八年级第十八章第一节勾股定理第一课时,勾股定理是几何中几个重要定理之一,它揭示的是直角三角形中三边的数量关系。它在数学的发展中起过重要的作用,在现时世界中也有着广泛的作用。学生通过对勾股定理的学习,可以在原有的基础上对直角三角形有进一步的认识和理解。(二)根据课程标准,本课的教学目标是:1、 能说出勾股定理的内容。2、 会初步运用勾股定理进行简单的计算和实际运用。3、 情感态度与价值
2、观:培养严谨的数学学习的态度,体会勾股定理的应用价值。4、 通过介绍勾股定理在中国古代的研究,激发学生热爱祖国,热爱祖国悠久文化的思想,激励学生发奋学习。(三)重点与难点1、掌握勾股定理及应用它解决简单的实际问题2、理解勾股定理的推导过程二、教法与学法分析:教法分析:针对初二年级学生的知识结构和心理特征,本节课可选择引导探索法。学法分析:在教师的组织引导下,采用自主探索、合作交流的研讨式学习方式,让学生思考问题,获取知识,掌握方法,借此培养学生动手、动脑、动口的能力,使学生真正成为学习的主体。教学过程设计一、提出问题受
3、台风麦莎影响,一棵树在离地面4米处断裂,树的顶部落在离树跟底部3米处,这棵树折断前有多高?y=0请思考4米3米二、尝试探索邮票赏析这是1955年希腊曾经发行的纪念一位数学家的邮票。观察这枚邮票图案小方格的个数,你有什么发现?实验:将每个小正方形的面积看作1,△ABC是以格点为顶点的直角三角形,分别以三边向外作正方形。ABCPQR你能计算以AB为边的正方形的面积吗?SP=9SQ=16SR=?这是用“补”的方法ABCPQRSR=25这是用“割”的方法PQRABCSR=25PQCR如图,小方格的边长为1.(1)你能求出正方形
4、R的面积吗?用了“补”的方法PQCR用了“割”的方法QPQRacbSP+SQ=SR仔细观察,你有什么发现?猜想:两直角边a、b与斜边c之间的关系?a2+b2=c2CAB谁能用语言叙述这一结论?┏a2+b2=c2acb直角三角形两直角边的平方和等于斜边的平方.勾股弦勾股定理(毕达哥拉斯定理)两千多年前,古希腊有个哥拉斯学派,他们首先发现了勾股定理,因此在国外人们通常称勾股定理为毕达哥拉斯年希腊曾经发行了一枚纪念票。定理。为了纪念毕达哥拉斯学派,1955勾股世界国家之一。早在三千多年前,国家之一。早在三千多年前,国家之一。
5、早在三千多年前,国家之一。早在三千多年前,国家之一。早在三千多年前,国家之一。早在三千多年前,国家之一。早在三千多年前,国家之一。早在三千多年前两千多年前,古希腊有个毕达哥拉斯学派,他们首先发现了勾股定理,因此在国外人们通常称勾股定理为毕达哥拉斯定理。为了纪念毕达哥拉斯学派,1955年希腊曾经发行了一枚纪念邮票。我国是最早了解勾股定理的国家之一。早在三千多年前,周朝数学家商高就提出,将一根直尺折成一个直角,如果勾等于三,股等于四,那么弦就等于五,即“勾三、股四、弦五”,它被记载于我国古代著名的数学著作《周髀算经》中。千
6、古第一定理数与形的第一定理导致第一次数学危机数学由计算转变为证明是第一个不定方程毕达哥拉斯定理勾股(商高)定理三、勾股定理的证明cbac2=(ab)2+4(½ab)=a22ab+b2+2abc2=a2+b2方法一:3世纪我国汉代的赵爽指出:四个全等的直角三角形如下拼成一个中空的正方形,由大正方形的面积等于小正方形的面积与4个三角形的面积和得:两直角边的平方和等于斜边的平方赵爽弦图“赵爽弦图”表现了我国古代人对数学的钻研精神和聪明才智,它是我国数学的骄傲。中国古代的数学家们不仅很早就发现并应用勾股定理,而且很早就
7、尝试对勾股定理作理论的证明。最早对勾股定理进行证明的,是三国时期吴国的数学家赵爽。正因为此,这个图案被选为2002年在北京召开的国际数学家大会会徽。2002年世界数学家大会会标在1876年一个周末的傍晚,美国华盛顿的郊外,有一位中年人正在散步,欣赏黄昏的美景,他就是当时美国俄亥俄州共和党议员伽菲尔德.他走着走着,突然发现附近的一个小石凳上,有两个小孩正在聚精会神地谈论着什么,时而大声争论,时而小声探讨.由于好奇心驱使,伽菲尔德循声向两个小孩走去,想搞清楚两个小孩到底在干什么,只见一个小男孩正俯着身子,用树枝在地上画一个
8、直角三角形,于是伽菲尔德便问,你们在干什么?只见那个小男孩头也不抬地说:“请问先生,如果直角三角形的两条直角边分别是3和4,那么斜边长为多少呢?”伽菲尔德答到:“是5呀。”小男孩又问道:“如果两条直角边分别为5和7,那么这个直角三角形的斜边长又是多少呢?”伽菲尔德不假思索地回答到:“那斜边的平方,一定等于5的平方加上7的平方.”小
此文档下载收益归作者所有