Faster Training of Neural Networks for Recommender Systems.pdf

Faster Training of Neural Networks for Recommender Systems.pdf

ID:49874196

大小:247.28 KB

页数:48页

时间:2020-03-05

Faster Training of Neural Networks for Recommender Systems.pdf_第1页
Faster Training of Neural Networks for Recommender Systems.pdf_第2页
Faster Training of Neural Networks for Recommender Systems.pdf_第3页
Faster Training of Neural Networks for Recommender Systems.pdf_第4页
Faster Training of Neural Networks for Recommender Systems.pdf_第5页
资源描述:

《Faster Training of Neural Networks for Recommender Systems.pdf》由会员上传分享,免费在线阅读,更多相关内容在应用文档-天天文库

1、FasterTrainingofNeuralNetworksforRecommenderSystemsbyWendyKogelAThesisSubmittedtotheFacultyoftheWORCESTERPOLYTECHNICINSTITUTEinpartialful llmentoftherequirementsfortheDegreeofMasterofScienceinComputerSciencebyMay2002APPROVED:ProfessorCarolinaRuiz,ThesisAdvis

2、orProfessorSergioA.Alvarez(BostonCollege),ThesisAdvisorProfessorLeeA.Becker,ThesisReaderProfessorMichaHofri,HeadofDepartmentAbstractInthisprojectweinvestigatetheuseofarti cialneuralnetworks(ANNs)asthecorepredictionfunctionofarecommendersystem.Inthepast,resea

3、rchconcernedwithrec-ommendersystemsthatuseANNshavemainlyconcentratedonusingcollaborative-basedinformation.Welookatthee ectsofaddingcontent-basedinformationandhowalteringthetopologyofthenetworkitselfa ectstheaccuracyoftherecommendationsgenerated.Inparticular,

4、weinvestigateamixtureofexpertstopology.WecreatetwoexpertclustersinthehiddenlayeroftheANN,oneforcontent-baseddataandanotherforcollaborative-baseddata.Thisgreatlyreducesthenumberofconnectionsbetweentheinputandhiddenlayers.Ourexperimentalevaluationshowsthatthis

5、newarchitectureproducesthesameaccuracyofrecommendationasthefullyconnectedcon gurationwithalargedecreaseintheamountoftimeittakestotrainthenetwork.Thisdecreaseintimeisagreatadvantagebecauseoftheneedforrecommendersystemstoproviderealtimeresultstotheuser.Acknowl

6、edgmentsIwouldliketothankProf.CarolinaRuizandProf.SergioAlvarezforalltheirhelpthroughoutthewholeofmymaster'sthesiswork.Prof.LeeA.Beckerfortakingthetimetoreadandcritiquemythesis.Prof.MichaelCiaraldiforhishelpin guringoutWeka.TheKnowledgeDiscoveryandDataMining

7、ResearchGroup(KDDRG)atWPIfortheirhelpwithWekaandinputonmythesispresentation.iContents1Introduction12BackgroundandRelatedWork52.1NeuralNetworks.................................52.2ErrorBack-Propagation.............................72.3RecommenderSystems.......

8、.......................92.3.1Content-basedandCollaborativeRecommendation..........102.4Weka........................................113ANewANNArchitectureforRecommenderSystems133.1NetworkArchitec

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。