特殊平行四边形教案.doc

特殊平行四边形教案.doc

ID:49871230

大小:110.98 KB

页数:10页

时间:2020-03-05

特殊平行四边形教案.doc_第1页
特殊平行四边形教案.doc_第2页
特殊平行四边形教案.doc_第3页
特殊平行四边形教案.doc_第4页
特殊平行四边形教案.doc_第5页
资源描述:

《特殊平行四边形教案.doc》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库

1、18.2.1矩形(一)一、教学目标:   1.掌握矩形的概念和性质,理解矩形与平行四边形的区别与联系.   2.会初步运用矩形的概念和性质来解决有关问题.   3.渗透运动联系、从量变到质变的观点.二、重点、难点1.重点:矩形的性质.2.难点:矩形的性质的灵活应用.课堂引入1.展示生活中一些平行四边形的实际应用图片(推拉门,活动衣架,篱笆、井架等),想一想:这里面应用了平行四边形的什么性质?2.思考:拿一个活动的平行四边形教具,轻轻拉动一个点,观察不管怎么拉,它还是一个平行四边形吗?为什么?(动画演示拉动过程如图)3.再次演示

2、平行四边形的移动过程,当移动到一个角是直角时停止,让学生观察这是什么图形?(小学学过的长方形)引出本课题及矩形定义.矩形定义:有一个角是直角的平行四边形叫做矩形(通常也叫长方形).矩形性质1 矩形的四个角都是直角.矩形性质2 矩形的对角线相等.如图,在矩形ABCD中,AC、BD相交于点O,由性质2有AO=BO=CO=DO=AC=BD.因此可以得到直角三角形的一个性质:直角三角形斜边上的中线等于斜边的一半.例习题分析例1已知:如图,矩形ABCD的两条对角线相交于点O,∠AOB=60°,AB=4cm,求矩形对角线的长.解:∵ 四边

3、形ABCD是矩形,∴ AC与BD相等且互相平分.∴ OA=OB.又∠AOB=60°,∴△OAB是等边三角形.∴矩形的对角线长AC=BD=2OA=2×4=8(cm).例2(补充)已知:如图,矩形ABCD,AB长8cm,对角线比AD边长4cm.求AD的长及点A到BD的距离AE的长.例3(补充)已知:如图,矩形ABCD中,E是BC上一点,DF⊥AE于F,若AE=BC.求证:CE=EF.证明:∵四边形ABCD是矩形,∴∠B=90°,且AD∥BC.∴∠1=∠2.∵DF⊥AE,∴∠AFD=90°.∴∠B=∠AFD.又AD=AE,∴△ABE

4、≌△DFA(AAS).∴AF=BE.∴EF=EC.此题还可以连接DE,证明△DEF≌△DEC,得到EF=EC.六、随堂练习1.(填空)(1)矩形的定义中有两个条件:一是,二是.(2)已知矩形的一条对角线与一边的夹角为30°,则矩形两条对角线相交所得的四个角的度数分别为、、、.(3)已知矩形的一条对角线长为10cm,两条对角线的一个交角为120°,则矩形的边长分别为cm,cm,cm,cm.2.(选择)(1)下列说法错误的是().(A)矩形的对角线互相平分(B)矩形的对角线相等(C)有一个角是直角的四边形是矩形(D)有一个角是直角

5、的平行四边形叫做矩形(2)矩形的对角线把矩形分成的三角形中全等三角形一共有().(A)2对(B)4对(C)6对(D)8对3.已知:如图,O是矩形ABCD对角线的交点,AE平分∠BAD,∠AOD=120°,求∠AEO的度数.教学反思:18.2.1矩形(二)一、教学目标:  1.理解并掌握矩形的判定方法.  2.使学生能应用矩形定义、判定等知识,解决简单的证明题和计算题,进一步培养学生的分析能力二、重点、难点1.重点:矩形的判定.2.难点:矩形的判定及性质的综合应用.课堂引入1.什么叫做平行四边形?什么叫做矩形?2.矩形有哪些性质

6、?矩形判定方法1:对角钱相等的平行四边形是矩形.矩形判定方法2:有三个角是直角的四边形是矩形.例习题分析例1(补充)下列各句判定矩形的说法是否正确?为什么?   (1)有一个角是直角的四边形是矩形;(×)   (2)有四个角是直角的四边形是矩形;(√)   (3)四个角都相等的四边形是矩形;(√)     (4)对角线相等的四边形是矩形;(×)     (5)对角线相等且互相垂直的四边形是矩形;(×)(6)对角线互相平分且相等的四边形是矩形;(√)(7)对角线相等,且有一个角是直角的四边形是矩形;(×)(8)一组邻边垂直,一组

7、对边平行且相等的四边形是矩形;(√)   (9)两组对边分别平行,且对角线相等的四边形是矩形.(√)例2(补充)已知ABCD的对角线AC、BD相交于点O,△AOB是等边三角形,AB=4cm,求这个平行四边形的面积.分析:首先根据△AOB是等边三角形及平行四边形对角线互相平分的性质判定出ABCD是矩形,再利用勾股定理计算边长,从而得到面积值.解:∵ 四边形ABCD是平行四边形,∴AO=AC,BO=BD.∵ AO=BO,∴ AC=BD.∴ ABCD是矩形(对角线相等的平行四边形是矩形).在Rt△ABC中,∵ AB=4cm,AC=2

8、AO=8cm,∴BC=(cm).例3(补充)  已知:如图(1),ABCD的四个内角的平分线分别相交于点E,F,G,H.求证:四边形EFGH是矩形.证明:∵四边形ABCD是平行四边形,∴AD∥BC.∴ ∠DAB+∠ABC=180°.又AE平分∠DAB,BG平分∠ABC,∴ ∠

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。