欢迎来到天天文库
浏览记录
ID:49835852
大小:9.44 MB
页数:547页
时间:2020-03-05
《James Munkres 《Topology 》(2nd ed)(英文版).pdf》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、ContentsPreface......................................vii.....ANotetotheReader................................xiPartIGENERALTOPOLOGYChapter1SetTheoryandLogic.......................31FundamentalConcepts..........................42Functions.................................15L,.+3R
2、elations.................................214TheIntegersandtheRealNumbers...................305CartesianProducts............................366Finitesets................................397CountableandUncountableSets....................44*8ThePrincipleofRecursiveDefinition.......
3、...........52hF9InfiniteSetsandtheAxiomofChoice..................5710Well-orderedSets............................62*11TheMaximumPrinciple.........................68*SupplementaryExercises:Well-Ordering...................72ivContentsChapter2TopologicalSpacesandContinuousFunction
4、s.........7512TopologicalSpaces............................7513BasisforaTopology...........................7814TheOrderTopology...........................8415TheProductTopologyonXxY....................8616TheSubspaceTopology.........................8817ClosedSetsandLimitPoints.
5、.....................9218ContinuousFunctions..........................10219TheProductTopology..........................11220TheMetricTopology...........................11921TheMetricTopology(continued)....................129*22TheQuotientTopology.........................136*Sup
6、plementaryExercises:TopologicalGroups................145Chapter3ConnectednessandCompactness.................14723ConnectedSpaces............................14824ConnectedSubspacesoftheRealLine.................153"25ComponentsandLocalConnectedness.................15926CompactSpa
7、ces.............................16327CompactSubspacesoftheRealLine..................17228Limitpointcompactnes$........................17829LocalCompactness...........................182*SupplementaryExercises:Nets........................187Chapter4CountabilityandSeparationAxiom
8、s.......I30TheCountabilityAxioms......................
此文档下载收益归作者所有