calculus concepts and contexts 2nd ed - james stewart

calculus concepts and contexts 2nd ed - james stewart

ID:14311502

大小:16.99 MB

页数:1131页

时间:2018-07-27

calculus concepts and contexts 2nd ed - james stewart_第1页
calculus concepts and contexts 2nd ed - james stewart_第2页
calculus concepts and contexts 2nd ed - james stewart_第3页
calculus concepts and contexts 2nd ed - james stewart_第4页
calculus concepts and contexts 2nd ed - james stewart_第5页
资源描述:

《calculus concepts and contexts 2nd ed - james stewart》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

1、APreviewofCalculusCalculusisfundamentallydifferentfromthemathe-usefultohaveanoverviewofthesubjectbeforematicsthatyouhavestudiedpreviously.Calculusisbeginningitsintensivestudy.Herewegiveaglimpselessstaticandmoredynamic.Itisconcernedwithofsomeofthemainideasofcalculusbyshowingchangeandmo

2、tion;itdealswithquantitiesthathowtheconceptofalimitariseswhenweattempttoapproachotherquantities.Forthatreasonitmaybesolveavarietyofproblems.TheAreaProblemA¡Theoriginsofcalculusgobackatleast2500yearstotheancientGreeks,whofoundareasusingthe“methodofexhaustion.”Theyknewhowtofindtheareaofa

3、nypoly-AA∞A™gonbydividingitintotrianglesasinFigure1andaddingtheareasofthesetriangles.A¢Itisamuchmoredifficultproblemtofindtheareaofacurvedfigure.TheGreekA£methodofexhaustionwastoinscribepolygonsinthefigureandcircumscribepoly-gonsaboutthefigureandthenletthenumberofsidesofthepolygonsincrease

4、.A=A¡+A™+A£+A¢+A∞Figure2illustratesthisprocessforthespecialcaseofacirclewithinscribedregularFIGURE1polygons.A£A¢A∞AßA¶A¡™FIGURE2LetAnbetheareaoftheinscribedpolygonwithsides.Asincreases,itappearsnnthatAnbecomescloserandclosertotheareaofthecircle.WesaythattheareaoftheThePreviewMod

5、uleisanumeri-circleisthelimitoftheareasoftheinscribedpolygons,andwewritecalandpictorialinvestigationoftheapproximationoftheareaofacircleAlimAnnlbyinscribedandcircumscribedpolygons.TheGreeksthemselvesdidnotuselimitsexplicitly.However,byindirectreasoning,Eudoxus(fifthcenturyB.C.)usedex

6、haustiontoprovethefamiliarformulaforthearea2ofacircle:Ar.WewilluseasimilarideainChapter5tofindareasofregionsofthetypeshowninFigure3.WewillapproximatethedesiredareaAbyareasofrectangles(asinFigure4),letthewidthoftherectanglesdecrease,andthencalculateasthelimitofAthesesumsofareasofrecta

7、ngles.yyyy(1, 1)(1,1)(1,1)(1,1)y=≈A01x01131x01x011x424nFIGURE3FIGURE434APREVIEWOFCALCULUSIsitpossibletofillacirclewithrectangles?TheareaproblemisthecentralprobleminthebranchofcalculuscalledintegralTryitforyourself.calculus.ThetechniquesthatwewilldevelopinChapter5forfindingareaswillalso

8、Resou

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。