欢迎来到天天文库
浏览记录
ID:14336460
大小:16.99 MB
页数:1131页
时间:2018-07-28
《calculus concepts and contexts 2nd ed - james stewart》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库。
1、APreviewofCalculusCalculusisfundamentallydifferentfromthemathe-usefultohaveanoverviewofthesubjectbeforematicsthatyouhavestudiedpreviously.Calculusisbeginningitsintensivestudy.Herewegiveaglimpselessstaticandmoredynamic.Itisconcernedwithofsomeofthemainideasofcalculusbyshowingchange
2、andmotion;itdealswithquantitiesthathowtheconceptofalimitariseswhenweattempttoapproachotherquantities.Forthatreasonitmaybesolveavarietyofproblems.TheAreaProblemA¡Theoriginsofcalculusgobackatleast2500yearstotheancientGreeks,whofoundareasusingthe“methodofexhaustion.”Theyknewhowtofind
3、theareaofanypoly-AA∞A™gonbydividingitintotrianglesasinFigure1andaddingtheareasofthesetriangles.A¢Itisamuchmoredifficultproblemtofindtheareaofacurvedfigure.TheGreekA£methodofexhaustionwastoinscribepolygonsinthefigureandcircumscribepoly-gonsaboutthefigureandthenletthenumberofsidesofthep
4、olygonsincrease.A=A¡+A™+A£+A¢+A∞Figure2illustratesthisprocessforthespecialcaseofacirclewithinscribedregularFIGURE1polygons.A£A¢A∞AßA¶A¡™FIGURE2LetAnbetheareaoftheinscribedpolygonwithsides.Asincreases,itappearsnnthatAnbecomescloserandclosertotheareaofthecircle.Wesaythatthear
5、eaoftheThePreviewModuleisanumeri-circleisthelimitoftheareasoftheinscribedpolygons,andwewritecalandpictorialinvestigationoftheapproximationoftheareaofacircleAlimAnnlbyinscribedandcircumscribedpolygons.TheGreeksthemselvesdidnotuselimitsexplicitly.However,byindirectreasoning,Eudox
6、us(fifthcenturyB.C.)usedexhaustiontoprovethefamiliarformulaforthearea2ofacircle:Ar.WewilluseasimilarideainChapter5tofindareasofregionsofthetypeshowninFigure3.WewillapproximatethedesiredareaAbyareasofrectangles(asinFigure4),letthewidthoftherectanglesdecrease,andthencalculateasthel
7、imitofAthesesumsofareasofrectangles.yyyy(1, 1)(1,1)(1,1)(1,1)y=≈A01x01131x01x011x424nFIGURE3FIGURE434APREVIEWOFCALCULUSIsitpossibletofillacirclewithrectangles?TheareaproblemisthecentralprobleminthebranchofcalculuscalledintegralTryitforyourself.calculus.Thetechniquesthatwewilldeve
8、lopinChapter5forfindingareaswillalsoResou
此文档下载收益归作者所有