知识讲解_变量间的相关关系_基础.doc

知识讲解_变量间的相关关系_基础.doc

ID:49755592

大小:654.00 KB

页数:8页

时间:2020-03-04

知识讲解_变量间的相关关系_基础.doc_第1页
知识讲解_变量间的相关关系_基础.doc_第2页
知识讲解_变量间的相关关系_基础.doc_第3页
知识讲解_变量间的相关关系_基础.doc_第4页
知识讲解_变量间的相关关系_基础.doc_第5页
资源描述:

《知识讲解_变量间的相关关系_基础.doc》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库

1、.变量的相关关系编稿:丁会敏  审稿:王静伟【学习目标】1.明确两个变量具有相关关系的意义;2.知道回归分析的意义;3.知道回归直线、回归直线方程、线性回归分析的意义;4.掌握对两个变量进行线性回归的方法和步骤,并能借助科学计算器确定实际问题中两个变量间的回归直线方程;【要点梳理】【高清课堂:变量的相关关系400458知识讲解1】要点一、变量之间的相关关系变量与变量之间存在着两种关系:一种是函数关系,另一种是相关关系。1.函数关系函数关系是一种确定性关系,如y=kx+b,变量取的每一个值,都有唯一确定的值和它相对

2、应。2.相关关系变量间确定存在关系,但又不具备函数关系所要求的确定性相关关系分为两种:正相关和负相关要点诠释:对相关关系的理解应当注意以下几点:(1)相关关系与函数关系不同.因为函数关系是一种非常确定的关系,而相关关系是一种非确定性关系,即相关关系是非随机变量与随机变量之间的关系.而函数关系可以看成是两个非随机变量之间的关系.因此,不能把相关关系等同于函数关系.(2)函数关系是一种因果关系,而相关关系不一定是因果关系,也可能是伴随关系.例如,有人发现,对于在校儿童,鞋的大小与阅读能力有很强的相关关系.然而,学会新

3、词并不能使脚变大,而是涉及到第三个因素——年龄.当儿童长大一些,他们的阅读能力会提高而且由于长大脚也变大.(3)函数关系与相关关系之间有着密切联系,在一定的条件下可以相互转化.例如正方形面积S与其边长x间虽然是一种确定性关系,但在每次测量边长时,由于测量误差等原因,其数值大小又表现出一种随机性.而对于具有线性关系的两个变量来说,当求得其回归直线后,我们又可以用一种确定性的关系对这两个变量间的关系进行估计.3.散点图将收集到的两个变量的统计数据分别作为横、纵坐标,在直角坐标系中描点,这样的图叫做散点图。通过散点图可

4、初步判断两个变量之间是否具有相关关系,她反映了各数据的密切程度。要点二、正相关、负相关(1)正相关:在统计数据中的两个变量,一个变量的值由小变大时,另一个变量的值也由小变大,这种相关称为正相关。如:家庭年收入越高,年饮食支出越高。反映在散点图上它们散布在从左下角到右上角的区域,按表中所列数据制作散点图如图A05101520253035B541.67602.66670.09704.99806.71908.59975.421034.75Word资料.(2)负相关:如果两个变量中,一个变量的值由小到大变化时,另一个变量

5、的值由大到小变化,那么这种相关称为负相关。在散点图中,对应数据的位置为从左上角到右下角的区域。按表中所列数据制作的散点图如图。C581618283035D64565042373221(3)无相关关系:如果关于两个变量统计数据的散点图如下图所示,那么这两个变量之间不具有相关关系。例如,学生的身高与学生的学习成绩没有相关关系。要点诠释:利用散点图可以大致判断两个变量之间有无相关关系。【高清课堂:变量的相关关系400458知识讲解2】要点三、线性回归方程1.回归直线方程(1)回归直线:观察散点图的特征,发现各个大致分布

6、在通过散点图中心的一条直线附近。如果散点图中点的分布从整体上看大致在一条直线附近,我们就称这两个变量之间具有线性相关关系,这条直线叫做回归直线。求出的回归直线方程简称回归方程。2.回归直线方程的求法设与个观测点()最接近的直线方程为,其中a、b是待定系数.则.于是得到各个偏差Word资料..显见,偏差的符号有正有负,若将它们相加会造成相互抵消,所以它们的和不能代表几个点与相应直线在整体上的接近程度,故采用n个偏差的平方和.表示n个点与相应直线在整体上的接近程度.记.上述式子展开后,是一个关于a、b的二次多项式,应

7、用配方法,可求出使Q为最小值时的a、b的值.即, ,相应的直线叫做回归直线,对两个变量所进行的上述统计分析叫做回归分析上述求回归直线的方法是使得样本数据的点到回归直线的距离的平方和最小的方法,叫做最小二乘法。要点诠释:1.对回归直线方程只要求会运用它进行具体计算a、b,求出回归直线方程即可.不要求掌握回归直线方程的推导过程.2.求回归直线方程,首先应注意到,只有在散点图大致呈线性时,求出的回归直线方程才有实标意义.否则,求出的回归直线方程毫无意义.因此,对一组数据作线性回归分析时,应先看其散点图是否成线性.3.求

8、回归直线方程,关键在于正确地求出系数a、b,由于求a、b的计算量较大,计算时仔细谨慎、分层进行,避免因计算产生失误.4.回归直线方程在现实生活与生产中有广泛的应用.应用回归直线方程可以把非确定性问题转化成确定性问题,把“无序”变为“有序”,并对情况进行估测、补充.因此,学过回归直线方程以后,应增强学生应用回归直线方程解决相关实际问题的意识.【典型例题】类型一:变量间的相关

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。