欢迎来到天天文库
浏览记录
ID:49705341
大小:17.21 KB
页数:8页
时间:2020-03-03
《一次函数的应用.docx》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、一次函数的应用一、复习目标1. 复习一次函数的基本性质。 2. 利用数形结合探究一次函数图象与实际意义的对应,体会函数图象所反映出的函数性质。二、课时安排1课时三、复习重难点1、探究一次函数图象在实际中的应用。2、一次函数图象的辨析。四、教学过程(一)知识梳理 一次函数的应用建模思想一次函数在现实生活中有着广泛的应用,在解答一次函数的应用题时,应从给定的信息中抽象出一次函数关系,理清哪个是自变量,哪个是自变量的函数,确定出一次函数,再利用一次函数的图象与性质求解,同时要注意自变量的取值范围实际问题中一次函数的最大(小)值在实际问题中,自变量的取值范
2、围一般受到限制,一次函数的图象就由直线变成线段或射线,根据函数图象的性质,函数就存在最大值或最小值常见类型(1)求一次函数的解析式(2)利用一次函数的图象与性质解决某些问题,如最值等(二)题型、技巧归纳考点一:利用一次函数进行方案选择技巧归纳:一次函数的方案决策题,一般都是利用自变量的取值不同,得出不同方案,并根据自变量的取值范围确定出最佳方案.考点二:利用一次函数解决资源收费问题技巧归纳:此类问题多以分段函数的形式出现,正确理解分段函数是解决问题的关键,一般应从如下几方面入手:(1)寻找分段函数的分段点;(2)针对每一段函数关系,求解相应的函数解析
3、式;(3)利用条件求未知问题.考点三:利用一次函数解决其他生活实际问题技巧归纳:结合函数图象及性质,弄清图象上的一些特殊点的实际意义及作用,寻找解决问题的突破口,这是解决一次函数应用题常见的思路.“图形信息”题是近几年的中考热点考题,解此类问题应做到三个方面:(1)看图找点,(2)见形想式,(3)建模求解.(三)典例精讲例1我市某医药公司把一批药品运往外地,现有两种运输方式可供选择.方式一:使用快递公司的邮车运输,装卸收费400元,另外每公里再加收4元;方式二:使用快递公司的火车运输,装卸收费820元,另外每公里再加收2元;(1)请分别写出邮车、火车
4、运输的总费用y1(元)、y2(元)与运输路程x(公里)之间的函数关系式;(2)你认为选用哪种运输方式较好,为什么?[解析](1)根据方式一、二的收费标准即可得出y1(元)、y2(元)与运输路程x(公里)之间的函数关系式.(2)比较两种方式的收费多少与x的变化之间的关系,从而根据x的不同选择合适的运输方式.解:(1)由题意得,y1=4x+400,y2=2x+820.(2)令4x+400=2x+820,解之得x=210,所以当运输路程小于210km时,y1<y2,选择邮车运输较好;当运输路程等于210km时,y1=y2,选择两种方式一样;当运输路程大于2
5、10km时,y1>y2,选择火车运输较好例2为促进节能减排,倡导节约用电,某市将实行居民生活用电阶梯电价方案,图12-1中折线反映了每户居民每月用电电费y(元)与用电量x(度)间的函数关系.(1)根据图象,阶梯电价方案分为三个档次,请填写下表:档次第一档第二档第三档每月用电量x度0<x≤140______(2)小明家某月用电120度,需要交电费________元;(3)求第二档每月电费y(元)与用电量x(度)之间的函数关系式;(4)在每月用电量超过230度时,每多用1度电要比第二档多付电费m元,小刚家某月用电290度交纳电费153元,求m的值.[解析
6、](1)利用函数图象可以得出,阶梯电价方案分为三个档次,利用横坐标可得出:第二档,第三档中x的取值范围;(2)根据第一档范围是:0<x≤140,利用图象上点的坐标得出解析式,进而得出x=120时y的值;(3)设第二档每月电费y(元)与用电量x(度)之间的函数关系式为:y=kx+b,将(140,63),(230,108)代入求出k,b的值即可;(4)分别求出第二、三档每度电的费用,进而得出m的值即可.解:(1)填表如下:档次第一档第二档第三档每月用电量x度0<x≤140140230(2)54(3)设y与x的关系式为y=kx+b,点(140,63)和(2
7、30,108)在y=kx+b的图象上,解得y与x的关系式为y=0.5x-7.(4)方法一:第三档中1度电交电费(153-108)÷(290-230)=0.75(元);第二档1度电交电费(108-63)÷(230-140)=0.5(元),所以m=0.75-0.5=0.25.方法二:根据题意得,×(290-230)+108=153,解得m=0.25.例3周末,小明骑自行车从家里出发到野外郊游.从家出发0.5小时后到达甲地,游玩一段时间后按原速前往乙地.小明离家1小时20分钟后,妈妈驾车沿相同路线前往乙地,如图12-2是他们离家的路程y(km)与小明离家时
8、间x(h)的函数图象.已知妈妈驾车的速度是小明骑车速度的3倍.(1)求小明骑车的速度和在甲地游玩的时间;(2
此文档下载收益归作者所有