人工智能_贝叶斯网络.ppt

人工智能_贝叶斯网络.ppt

ID:49295462

大小:1.13 MB

页数:31页

时间:2020-02-03

人工智能_贝叶斯网络.ppt_第1页
人工智能_贝叶斯网络.ppt_第2页
人工智能_贝叶斯网络.ppt_第3页
人工智能_贝叶斯网络.ppt_第4页
人工智能_贝叶斯网络.ppt_第5页
资源描述:

《人工智能_贝叶斯网络.ppt》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库

1、1ArtificialIntelligence: BayesianNetworks2GraphicalModelsIfnoassumptionofindependenceismade,thenanexponentialnumberofparametersmustbeestimatedforsoundprobabilisticinference.Norealisticamountoftrainingdataissufficienttoestimatesomanyparameters.Ifablanketass

2、umptionofconditionalindependenceismade,efficienttrainingandinferenceispossible,butsuchastrongassumptionisrarelywarranted.Graphicalmodelsusedirectedorundirectedgraphsoverasetofrandomvariablestoexplicitlyspecifyvariabledependenciesandallowforlessrestrictivei

3、ndependenceassumptionswhilelimitingthenumberofparametersthatmustbeestimated.BayesianNetworks:Directedacyclicgraphsthatindicatecausalstructure.MarkovNetworks:Undirectedgraphsthatcapturegeneraldependencies.3BayesianNetworksDirectedAcyclicGraph(DAG)Nodesarera

4、ndomvariablesEdgesindicatecausalinfluencesBurglaryEarthquakeAlarmJohnCallsMaryCalls4ConditionalProbabilityTablesEachnodehasaconditionalprobabilitytable(CPT)thatgivestheprobabilityofeachofitsvaluesgiveneverypossiblecombinationofvaluesforitsparents(condition

5、ingcase).Roots(sources)oftheDAGthathavenoparentsaregivenpriorprobabilities.BurglaryEarthquakeAlarmJohnCallsMaryCallsP(B).001P(E).002BEP(A)TT.95TF.94FT.29FF.001AP(M)T.70F.01AP(J)T.90F.055CPTCommentsProbabilityoffalsenotgivensincerowsmustaddto1.Examplerequir

6、es10parametersratherthan25–1=31forspecifyingthefulljointdistribution.NumberofparametersintheCPTforanodeisexponentialinthenumberofparents(fan-in).6JointDistributionsforBayesNetsABayesianNetworkimplicitlydefinesajointdistribution.ExampleThereforeaninefficien

7、tapproachtoinferenceis:1)Computethejointdistributionusingthisequation.2)Computeanydesiredconditionalprobabilityusingthejointdistribution.7NaïveBayesasaBayesNetNaïveBayesisasimpleBayesNetYX1X2…XnPriorsP(Y)andconditionalsP(Xi

8、Y)forNaïveBayesprovideCPTsforthe

9、network.8IndependenciesinBayesNetsIfremovingasubsetofnodesSfromthenetworkrendersnodesXiandXjdisconnected,thenXiandXjareindependentgivenS,i.e.P(Xi

10、Xj,S)=P(Xi

11、S)However,thisistoostrictacriteriaforconditionalind

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。