欢迎来到天天文库
浏览记录
ID:49253784
大小:461.00 KB
页数:9页
时间:2020-03-01
《2016高考数学二轮复习微专题强化练习题:13立体几何综合练习(文).doc》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、第一部分 一 13(文)一、选择题1.(2015·东北三校二模)设l,m是两条不同的直线,α是一个平面,则下列说法正确的是( )A.若l⊥m,m⊂α,则l⊥αB.若l⊥α,l∥m,则m⊥αC.若l∥α,m⊂α,则l∥mD.若l∥α,m∥α,则l∥m[答案] B[解析] 当l、m是平面α内的两条互相垂直的直线时,满足A的条件,故A错误;对于C,过l作平面与平面α相交于直线l1,则l∥l1,在α内作直线m与l1相交,满足C的条件,但l与m不平行,故C错误;对于D,设平面α∥β,在β内取两条相交的直线l、m,满足D的条件,故D错误;对于
2、B,由线面垂直的性质定理知B正确.2.已知α、β、γ是三个不同的平面,命题“α∥β,且α⊥γ⇒β⊥γ”是真命题,如果把α、β、γ中的任意两个换成直线,另一个保持不变,在所得的所有新命题中,真命题有( )A.0个 B.1个C.2个D.3个[答案] C[解析] 若α、β换成直线a、b,则命题化为“a∥b,且a⊥γ⇒b⊥γ”,此命题为真命题;若α、γ换为直线a、b,则命题化为“a∥β,且a⊥b⇒b⊥β”,此命题为假命题;若β、γ换为直线a、b,则命题化为“a∥α,且b⊥α⇒a⊥b”,此命题为真命题,故选C.3.(2015·
3、重庆文,5)某几何体的三视图如图所示,则该几何体的体积为( )A.+2πB.C.D.[答案] B[解析] 由三视图可知该几何体是由一个圆柱和一个半圆锥组成,圆柱的底面半径为1,高为2;半圆锥的底面半径为1,高也为1,故其体积为π×12×2+×π×12×1=;故选B.4.如图,在正四面体P-ABC中,D、E、F分别是AB、BC、CA的中点,下列四个结论不成立的是( )A.BC∥平面PDFB.DF⊥平面PAEC.平面PDF⊥平面PAED.平面PDE⊥平面ABC[答案] D[解析] ∵D、F分别为AB、AC的中点,∴BC∥DF,∵BC
4、⊄平面PDF,∴BC∥平面PDF,故A正确;在正四面体中,∵E为BC中点,易知BC⊥PE,BC⊥AE,∴BC⊥平面PAE,∵DF∥BC,∴DF⊥平面PAE,故B正确;∵DF⊥平面PAE,DF⊂平面PDF,∴平面PDF⊥平面PAE,∴C正确,故选D.5.若某棱锥的三视图(单位:cm)如图所示,则该棱锥的体积等于( )A.10cm3B.20cm3C.30cm3D.40cm3[答案] B[解析] 由三视图知该几何体是四棱锥,可视作直三棱柱ABC-A1B1C1沿平面AB1C1截去一个三棱锥A-A1B1C1余下的部分.∴VA-BCC1B1=
5、VABC-A1B1C1-VA-A1B1C1=×4×3×5-×(×4×3)×5=20cm3.6.如图,在棱长为5的正方体ABCD-A1B1C1D1中,EF是棱AB上的一条线段,且EF=2,Q是A1D1的中点,点P是棱C1D1上的动点,则四面体P-QEF的体积( )A.是变量且有最大值B.是变量且有最小值C.是变量且有最大值和最小值D.是常量[答案] D[解析] 因为EF=2,点Q到AB的距离为定值,所以△QEF的面积为定值,设为S,又因为D1C1∥AB,所以D1C1∥平面QEF;点P到平面QEF的距离也为定值,设为d,从而四面体P-
6、QEF的体积为定值Sd.7.(2015·湖北文,5)l1,l2表示空间中的两条直线,若p:l1,l2是异面直线,q:l1,l2不相交,则( )A.p是q的充分条件,但不是q的必要条件B.p是q的必要条件,但不是q的充分条件C.p是q的充分必要条件D.p既不是q的充分条件,也不是q的必要条件[答案] A[解析] 若p:l1,l2是异面直线,由异面直线的定义知,l1,l2不相交,所以命题q:l1,l2不相交成立,即p是q的充分条件;反过来,若q:l1,l2不相交,则l1,l2可能平行,也可能异面,所以不能推出l1,l2是异面直线,即p
7、不是q的必要条件,故应选A.8.已知正方形ABCD的边长为2,将△ABC沿对角线AC折起,使平面ABC⊥平面ACD,得到如右图所示的三棱锥B-ACD.若O为AC边的中点,M、N分别为线段DC、BO上的动点(不包括端点),且BN=CM.设BN=x,则三棱锥N-AMC的体积y=f(x)的函数图象大致是( )[答案] B[解析] 由条件知,AC=4,BO=2,S△AMC=CM·AD=x,NO=2-x,∴VN-AMC=S△AMC·NO=x(2-x),即f(x)=x(2-x),故选B.二、填空题9.(2015·天津文,10)一个几何体的三视
8、图如图所示(单位:m),则该几何体的体积为________m3.[答案] [解析] 考查1.三视图;2.几何体的体积.该几何体是由两个高为1的圆锥与一个高为2的圆柱组合而成,圆柱与圆锥的底面半径都是1,所以该几何体的体积为2××π×1
此文档下载收益归作者所有