欢迎来到天天文库
浏览记录
ID:49175828
大小:163.50 KB
页数:6页
时间:2020-02-29
《§6.10三元一次方程组及其解法1.doc》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、6.10三元一次方程组及其解法(1)普陀区课题组教学目标:1.知道三元一次方程组的概念,会用代入消元法、加减消元法解三元一次方程组.2.经历解三元一次方程组的过程,进一步体验化归思想和消元的方法.教学重点:应用代入消元法和加减消元法解三元一次方程组.教学难点:三元一次方程组转化为二元一次方程组.教学过程:教师活动学生活动设计意图一.三元一次方程组:1、复习引入:前面我们学习了二元一次方程组,请回忆什么是二元一次方程组?2、三元一次方程组提问:请大家观察以下的方程组,它们与前面所学的方程组有什么区别?;你能类比二元一次方程组给这些方程组一个名称吗?你能
2、类比二元一次方程组说说什么是三元一次方程组吗?3、课堂练习课后练习1(判断给出的方程组是否为三元一次方程组)第(2)题为什么不是?那么如何解三元一次方程组呢?二、解三元一次方程组的思想方法及解法:生答:如果方程组中含有两个未知数,且含未知数的项的次数都是一次,那么这样的方程组叫做二元一次方程组.生答:它们都含有三个未知数.三元一次方程组.如果方程组中含有三个未知数,且含未知数的项的次数都是一次,这样的方程组叫做三元一次方程组.预设生答:(1)是;(2)不是;(3)是.含未知数的项的次数是2次.通过类比二元一次方程组的概念得出三元一次方程组的概念.通过
3、课堂练习再次强调概念中的关键点:“方程组中含有三个未知数”、“含未知数的项的次数都是一次”.61、回顾解二元一次方程组的解题方法及思路:解二元一次方程组有哪些方法?这两种方法的实质是什么?教师出示解二元一次方程组的思想方法:通过消元法将二元一次方程转化为一元一次方程求解.二元一次方程组一元一次方程(消元)转化2、代入消元法解三元一次方程组那么大家想想这个三元一次方程组该如何求解?例题1:解方程组:(补充例题)①②③教师根据学生回答板书:解:将①式代入②式得:即:,④将①式代入③式得:即:,⑤(教师在此说明:现在我们将三元一次方程组转化为了一个二元一次
4、方程组)④⑤得到方程组:由⑤-④得:,将代入④得:.生答:代入消元法、加减消元法.实质是消元,将“二元”转化为“一元”生答:将①式代入②式可得:即:,④将①式代入③式可得:即:,⑤再由④、⑤两式可求解出y、z的值.回顾二元一次方程的解题方法和思路,强调其中的化归和消元的思想.本题的解题方法是代入消元,较简单,可由师生共同解决,教师作必要的引导.通过此例让学生体会解三元一次方程组的思想方法亦是通过消元,将问题转化为二元一次方程组,进而转化为一元一次方程.同时引出代入消元法解三元一次方程组.6所以,原方程组的解为:3、总结解三元一次方程组的思想方法提问:
5、前面提到解二元一次方程组的思想方法是将其转化为一元一次方程,那么回顾此题的解题过程,你认为解三元一次方程有怎样的思想方法?很好,解三元一次方程的思想方法和解二元一次方程的思想类似,也是通过消元将其转化为我们前面所学的二元一次方程组、一元一次方程进行求解.这是我们解三元一次方程组的思想方法:二元一次方程组一元一次方程三元一次方程组(消元)转化(消元)转化4、加减消元法解三元一次方程组再回顾上例,我们是通过代入消元法将三元一次方程组转化为了二元一次方程组,接下来我们将进一步探讨解三元一次方程组的其它方法.例题2:解方程组(课本例题2)①②③提问:观察此方
6、程组,三个方程中同一个未知数的系数间有怎样的特征呢?采取什么方法可以消元?教师根据学生回答板书:解:由①+②,得.即.④生答:可以通过消元先将三元一次方程组转化为二元一次方程组.预设学生:三个方程中未知数y的系数相等或互为相反数.可以把方程①、②相加消去y,方程②、③相加消去y,得到关于x、z的二元一次方程组.生答:由①+②,得.即.④通过上例,学生可以总结出解三元一次方程组的思想方法,再次强调解方程(组)问题中的化归思想.6由②+③,得⑤由④×5-⑤,得.解得把代入④,解得.把,代入①,得解得所以原方程组的解是适时小结:什么情况下可用加减消元法解题
7、?5、课堂练习:解下列方程组:(1)①②③①②③(2)①②③(3)思考:第(1)题应选择怎样的方法求解呢?根据学生回答板书:解:将②代入①得:,即:.④将②代入③得:即:.⑤由②+③,得⑤由④×5-⑤,得.解得把代入④,解得.把,代入①,得解得所以原方程组的解是预设学生回答:当某个未知数的系数相同或相反时,可以通过将两式相加或相减,从而消去此未知数.预设生答:用代入消元法解此方程组.预设生答:将②式分别代入①和③式,可将x消去,得到关于y和z的二元一次方程组.当方程组中同一个未知数的系数相等或互为相反数时,可以通过加减法,消元,以达到将三元一次方程组
8、转化为二元一次方程组的目的.但是两次消元目标应一致.由于解二元一次方程组是前几节课的重要知识点,学生已熟练掌
此文档下载收益归作者所有