欢迎来到天天文库
浏览记录
ID:49166324
大小:445.00 KB
页数:24页
时间:2020-02-29
《公务员行测各种公式总结(全).doc》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库。
1、1.200以内质数表2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,53,59,61,67,71,73,79,83,89,97,101,103,107,109,113,127,131,137,139,149,151,157,163,167,173,179,181,191,193,197,1993.整除判定能被2整除的数,其末尾数字是2的倍数(即偶数)能被3整除的数,各位数字之和是3的倍数能被5整除的数,其末尾数字是5的倍数(即5、0)能被4整除的数,其末两位数字是4的倍数能被8整除的数,期末三位数字是8的倍数
2、能被9整除的数,各位数字之和是9的倍数能被25整除的数,其末两位数字是25的倍数能被125整除的数,其末三位数字125的倍数1.4经典分解91=7×13111=3×37119=7×17133=7×19117=9×13143=11×13147=7×21153=9×17161=7×23171=9×19187=11×17209=19×111.5常用平方数数字平方11243941652563674986498110100111211214413169141961522516256172891832419361204002144122484235292
3、45762562526676277292878429841309001.6常用立方数数字立方1128327464512562167343851297291010001.7典型幂次数底数指数2345612345624916253638276412521641681256625129653224310246647297128825695121010241.8常用阶乘数数字阶乘1122364245120672075040840320936288010362880002.1浓度问题1.混合后溶液的浓度,应介于混合前的两种溶液浓度之间。2.浓度=溶质÷
4、溶液2.2代入排除法1奇数+奇数=偶数奇数-奇数=偶数偶数+偶数=偶数偶数-偶数=偶数奇数+偶数=奇数奇数-偶数=奇数2.①任意两个数的和如果是奇数,那么差也是奇数;如果和是偶数,那么差也是偶数。②任意两个数的和或差是奇数,则两数奇偶相反;和或差事偶数,则两数奇偶相同。3.余数特性①一个数被2除得的余数,就是其末一位数字被2除得的余数②一个数被5除得的余数,就是其末一位数字被5除得的余数③一个数被4除得的余数,就是其末两位数字被4除得的余数④一个数被8除得的余数,就是其末三位数字被8除得的余数⑤一个数被25除得的余数,就是其末两位数字被25除
5、得的余数⑥一个数被125除得的余数,就是其末三位数字被125除得的余数⑦一个数被3除得的余数,就是其各位数字相加后被3除得的余数⑧一个数被9除得的余数,就是其个位数字相加后被9除得的余数9.循环数198198198=198×10010012134213421342134=2134×1000100010001规律:有多少个循环数,就有多少个1,1之间0的个数是循环数位数减1例如2134213421342134,中有“2134”四个,所以应该有4个1,同时2134为四位数,所以两个1之间应该有三个0,所以为100010001000110.乘方尾数
6、口诀底数留个位,指数除以4留余数(余数为0,则看做4)例如19991998的末尾数字为:底数留个位,所以底数为9;指数除以4留余数,1998除以4的余数为2,所以最后为92=81,因此末尾数字为111.韦达定理其中x1和x2是这个方程的两个根,则:x1+x2=x1×x2=逆推理:如果a+b=ma×b=n则a、b是的两个根。5.4行程问题1.路程=速度×时间2.相向运动:速度取和;同向运动:速度取差3促进运动:速度取和;阻碍运动,速度取差5.5工程问题工作总量=工作效率×工作时间5.6几何问题1.常用周长公式:正方形周长长方形周长圆形周长2.常
7、用面积公式正方形面积长方形面积圆形面积三角形面积平行四边形面积梯形面积扇形面积3.常用表面积公式正方体表面积长方体表面积球表面积圆柱体表面积4.常用体积公式正方体体积长方体体积球的体积圆柱体体积圆锥体体积5.几何图形放缩性质若将一个图形扩大至原来的N倍,则:对应角度仍为原来的1倍;对应长度变为原来的N倍;面积变为原来的N2倍;体积变为原来的N3倍。6.几何最值理论1.平面图形中,若周长一定,越接近于圆,面积越大。2.平面图形中,若面积一定,越接近于圆,周长越小。3.立体图形中,若表面积一定,越接近于球体,体积越大。4.立体图形中,若体积一定,
8、越接近于球体,表面积越小。7.三角形三边关系三角形两边之和大于第三边,两边之差小于第三边。题目中例8非常重要。5.7容斥原理1.两集合标准型核心公式满足条件Ⅰ的个数
此文档下载收益归作者所有