2020届高考数学大二轮复习下篇指导六手热心稳实战演练教学案.docx

2020届高考数学大二轮复习下篇指导六手热心稳实战演练教学案.docx

ID:49117022

大小:943.36 KB

页数:53页

时间:2020-02-28

2020届高考数学大二轮复习下篇指导六手热心稳实战演练教学案.docx_第1页
2020届高考数学大二轮复习下篇指导六手热心稳实战演练教学案.docx_第2页
2020届高考数学大二轮复习下篇指导六手热心稳实战演练教学案.docx_第3页
2020届高考数学大二轮复习下篇指导六手热心稳实战演练教学案.docx_第4页
2020届高考数学大二轮复习下篇指导六手热心稳实战演练教学案.docx_第5页
资源描述:

《2020届高考数学大二轮复习下篇指导六手热心稳实战演练教学案.docx》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、指导六手热心稳·实战演练Ⅰ:高考客观题(12+4)·提速练(一)限时40分钟 满分80分一、选择题(本大题共12小题,每小题5分,共60分)1.已知集合M={x

2、x+3<2x2},N={x

3、-2≤x<1},则M∩N=(  )A.       B.C.[-2,-1)D.[-2,3)解析:C [解法一 由x+3<2x2,得2x2-x-3>0,即(x+1)(2x-3)>0,得x<-1或x>.所以M=(-∞,-1)∪.又N=[-2,1),所以M∩N=[-2,-1).故选C.解法二 因为1∉N,所以排除D项;因为0+3<2×0

4、2不成立,所以0∉M,所以排除A项;因为-+3<2×2成立,所以-∈M,又-∈N,所以-∈M∩N,故排除B.综上,选C.]2.已知复数z=(a2-3a+2)+(a2-a)i(a∈R)为纯虚数,则=(  )A.+iB.-iC.3-iD.3+i解析:A [由已知可得解得a=2,所以z=2i,故====+i.故选A.]3.2019年全国两会(即中华人民共和国第十三届全国人民代表大会第二次会议和中国人民政治协商会议第十三届全国委员会第二次会议)于3月份在北京召开.代表们提交的议案都是经过多次修改.为了解代表们的议案修改次数,

5、某调查机构采用随机抽样的方法抽取了120份议案进行调查,并进行了统计,将议案的修改次数分为6组:[0,5),[5,10),[10,15),[15,20),[20,25),[25,30],得到如图所示的频率分布直方图.则这120份议案中修改次数不低于15次的份数为(  )A.40   B.60   C.80    D.100解析:B [由频率分布直方图可知,议案修改次数不低于15次的频率为(0.06+0.03+0.01)×5=0.5,所以这120份议案中修改次数不低于15次的份数为120×0.5=60.故选B.]4.已

6、知角α的顶点在坐标原点O,始边与x轴的正半轴重合,将终边按逆时针方向旋转后经过点P(,1),则cos2α=(  )A.B.-C.-D.解析:D [由题意,将角α的终边按逆时针方向旋转后所得角为α+.因为

7、OP

8、==,所以sin==,cos==.故cos2α=sin=sin2=2sincos=2××=.故选D.]5.(多选题)已知π为圆周率,e为自然对数的底数,则(  )A.πe<3eB.3e-2π<3πe-2C.logπe3logπe解析:CD [本题考查利用函数的单调性比较大小.已知π

9、为圆周率,e为自然对数的底数,∴π>3>e>2,∴e>1,πe>3e,故A错误;∵0<<1,1>e-2>0,∴e-2>,∴3e-2π>3πe-2,故B错误;∵π>3,∴logπe3,可得log3e>logπe,则πlog3e>3logπe,故D正确.故选CD.]6.如图是以AB为直径的半圆,且AB=8,半径OB的垂直平分线与圆弧交于点P,+=0,则·=(  )A.9B.15C.-9D.-15解析:C [通解 连接OP,由已知,得OD=DB=AB=2,所以DP===2.由+=0可得Q为线段

10、PD的中点,故DQ=DP=.因为=+,=+,所以·=(+)·(+)=·+·+·+·=6×2cosπ+0+0+()2=-9.优解 以O为坐标原点,建立如图所示的平面直角坐标系,则A(-4,0),B(4,0),由+=0,设Q(2,m),则有P(2,2m),22+(2m)2=42,m2=3,又=(6,m),=(-2,m),所以·=(6,m)·(-2,m)=-12+m2=-9.]7.函数f(x)=的大致图象有(  )解析:C [由ex-e-x≠0,解得x≠0,所以函数f(x)的定义域为(-∞,0)∪(0,+∞),故排除B项.

11、因为f(-x)===-f(x),所以函数f(x)为奇函数,又f(1)==<0,故排除A项.设g(x)=ex-e-x,显然该函数单调递增,故当x>0时,g(x)>g(0)=0,则当x∈时,y=cos(πx)>0,故f(x)>0,当x∈时,y=cos(πx)<0,故f(x)<0,所以排除D项.综上,选C.]8.已知函数f(x)=sinωxcosφ+cosωxsinφ的图象经过点,将该函数的图象向右平移个单位长度后所得函数g(x)的图象关于原点对称,则ω的最小值是(  )A.B.2C.3D.解析:A [由已知得f(x)=s

12、in(ωx+φ),f(0)=-,得sinφ=-,因为

13、φ

14、<,所以φ=-,所以f(x)=sin.将该函数图象向右平移个单位长度后得函数g(x)=f=sin=sin的图象.由已知得函数g(x)为奇函数,所以+=kπ(k∈Z),解得ω=3k-(k∈Z).因为ω>0,所以ω的最小值为.]9.某几何体的正视图和侧视图为如图所示的相同的图形,俯视图为同心

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。