高考中解答题的审题方法探究.doc

高考中解答题的审题方法探究.doc

ID:48961872

大小:462.00 KB

页数:23页

时间:2020-02-26

高考中解答题的审题方法探究.doc_第1页
高考中解答题的审题方法探究.doc_第2页
高考中解答题的审题方法探究.doc_第3页
高考中解答题的审题方法探究.doc_第4页
高考中解答题的审题方法探究.doc_第5页
资源描述:

《高考中解答题的审题方法探究.doc》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、高考中解答题的审题方法探究一、解答题的地位及考查的范围数学解答题是高考数学试卷中的一类重要题型,这些题涵盖了中学数学的主要内容,具有知识容量大、解题方法多、能力要求高、突显数学思想方法的运用以及要求考生具有一定的创新意识和创新能力等特点,解答题综合考查学生的运算能力、逻辑思维能力、空间想象能力和分析问题、题解决问题的能力,分值占70~80分,主要分六块:三角函数(或与平面向量交汇)、函数与导数(或与不等式交汇)、概率与统计、解析几何(或与平面向量交汇)、立体几何、数列(或与不等式交汇).从历年高考题看综合题这些题型的命制都呈现出显著的特点和

2、解题规律,从阅卷中发现考生“会而得不全分”的现象大有人在,针对以上情况,在高考数学备考中认真分析这些解题特点并及时总结出来,这样有针对性的进行复习训练,能达到事半功倍的效果.二、解答题的解答技巧解答题是高考数学试卷的重头戏,占整个试卷分数的半壁江山,考生在解答解答题时,应注意正确运用解题技巧.(1)对会做的题目:要解决“会而不对,对而不全”这个老大难的问题,要特别注意表达准确,考虑周密,书写规范,关键步骤清晰,防止分段扣分.解题步骤一定要按教科书要求,避免因“对而不全”失分.(2)对不会做的题目:对绝大多数考生来说,更为重要的是如何从拿不下

3、来的题目中分段得分.我们说,有什么样的解题策略,就有什么样的得分策略.对此可以采取以下策略:①缺步解答:如遇到一个不会做的问题,将它们分解为一系列的步骤,或者是一个个小问题,先解决问题的一部分,能解决多少就解决多少,能演算几步就写几步.特别是那些解题层次明显的题目,每一步演算到得分点时都可以得分,最后结论虽然未得出,但分数却可以得到一半以上.②跳步解答:第一步的结果往往在解第二步时运用.若题目有两问,第(1)问想不出来,可把第(1)问作“已知”,先做第(2)问,跳一步再解答.③辅助解答:一道题目的完整解答,既有主要的实质性的步骤,也有次要的

4、辅助性的步骤.实质性的步骤未找到之前,找辅助性的步骤是明智之举.如:准确作图,把题目中的条件翻译成数学表达式,根据题目的意思列出要用的公式等.罗列这些小步骤都是有分的,这些全是解题思路的重要体现,切不可以不写,对计算能力要求高的,实行解到哪里算哪里的策略.书写也是辅助解答,“书写要工整,卷面能得分”是说第一印象好会在阅卷老师的心理上产生光环效应.④逆向解答:对一个问题正面思考发生思维受阻时,用逆向思维的方法去探求新的解题途径,往往能得到突破性的进展.顺向推有困难就逆推,直接证有困难就反证.三、怎样解答高考数学题1.解题思维的理论依据针对备考

5、学习过程中,考生普遍存在的共性问题:一听就懂、一看就会、一做就错、一放就忘,做了大量的数学习题,成绩仍然难以提高的现象,我们很有必要对自己的学习方式、方法进行反思,解决好“学什么,如何学,学的怎么样”的问题.要解决这里的“如何学”就需要改进学习方式,学会运用数学思想方法去自觉地分析问题,弄清题意,善于转化,能够将面对的新问题拉入自己的知识网络里,在最短的时间内拟定解决问题的最佳方案,实现学习效率的最优化.2.求解解答题的一般步骤第一步:(弄清题目的条件是什么,解题目标是什么?)23这是解题的开始,一定要全面审视题目的所有条件和答题要求,以求

6、正确、全面理解题意,在整体上把握试题的特点、结构,多方位、多角度地看问题,不能机械地套用模式,而应从各个不同的侧面、角度来识别题目的条件和结论以及图形的几何特征与数学式的数量特征之间的关系,从而利于解题方法的选择和解题步骤的设计.第二步:(探究问题已知与未知、条件与目标之间的联系,构思解题过程.)根据审题从各个不同的侧面、不同的角度得到的信息,全面地确定解题的思路和方法.第三步:(形成书面的解题程序,书写规范的解题过程.)解题过程其实是考查学生的逻辑推理以及运算转化等能力.评分标准是按步给分,也就是说考生写到哪步,分数就给到哪步,所以卷面上

7、讲究规范书写.第四步:(反思解题思维过程的入手点、关键点、易错点,用到的数学思想方法,以及考查的知识、技能、基本活动经验等.)(1)回头检验——即直接检查已经写好的解答过程,一般来讲解答题到最后得到结果时有一种感觉,若觉得运算挺顺利则好,若觉得解答别扭则十有八九错了,这就要认真查看演算过程.(2)特殊检验——即取特殊情形验证,如最值问题总是在特殊状态下取得的,于是可以计算特殊情形的数据,看与答案是否吻合.三角问题主要题型:(1)三角函数式的求值与化简问题;(2)单纯三角函数知识的综合;(3)三角函数与平面向量交汇;(4)三角函数与解斜三角形

8、的交汇;(5)单纯解斜三角形;(6)解斜三角形与平面向量的交汇.【例1】►(2012·山东)已知向量=(sinx,1),=(Acosx,cos2x)(A>0),函数f(x)=的最

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。