欢迎来到天天文库
浏览记录
ID:48960712
大小:355.00 KB
页数:5页
时间:2020-02-26
《三角函数、极限、等价无穷小公式.doc》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库。
1、..三角函数公式整合:两角和公式 sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-cosAsinB cos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinB tan(A+B)=(tanA+tanB)/(1-tanAtanB) tan(A-B)=(tanA-tanB)/(1+tanAtanB) cot(A+B)=(cotAcotB-1)/(cotB+cotA)cot(A-B)=(cotAcotB+1)/(cotB-cotA
2、)倍角公式 Sin2A=2SinA•CosA Cos2A=CosA^2-SinA^2=1-2SinA^2=2CosA^2-1tan2A=(2tanA)/(1-tanA^2)和差化积 sinθ+sinφ=2sin[(θ+φ)/2]cos[(θ-φ)/2] sinθ-sinφ=2cos[(θ+φ)/2]sin[(θ-φ)/2] cosθ+cosφ=2cos[(θ+φ)/2]cos[(θ-φ)/2] cosθ-cosφ=-2sin[(θ+φ)/2]sin[(θ-φ)/2] tanA+tanB=sin(A+B)/cosAc
3、osB=tan(A+B)(1-tanAtanB) tanA-tanB=sin(A-B)/cosAcosB=tan(A-B)(1+tanAtanB)积化和差 sinαsinβ=-1/2*[cos(α+β)-cos(α-β)] cosαcosβ=1/2*[cos(α+β)+cos(α-β)] sinαcosβ=1/2*[sin(α+β)+sin(α-β)]cosαsinβ=1/2*[sin(α+β)-sin(α-β)]诱导公式 sin(-α)=-sinα cos(-α)=cosα sin(π/2-α)=cosα co
4、s(π/2-α)=sinα sin(π/2+α)=cosα cos(π/2+α)=-sinα sin(π-α)=sinα..下载可编辑.... cos(π-α)=-cosα sin(π+α)=-sinα cos(π+α)=-cosα tanA=sinA/cosA tan(π/2+α)=-cotα tan(π/2-α)=cotα tan(π-α)=-tanα tan(π+α)=tanα诱导公式记背诀窍:奇变偶不变,符号看象限万能公式 1.极限的概念(1)数列的极限:,(正整数),当时,恒有或几何意义:在之外
5、,至多有有限个点(2)函数的极限的极限:,,当时,恒有或几何意义:在(之外,的值总在之间。的极限:,,当时,恒有或几何意义:在邻域内,的值总在之间。(3)左右极限左极限:,,当时,恒有..下载可编辑....或右极限:,,当时,恒有或极限存在的充要条件:(4)极限的性质唯一性:若,则唯一保号性:若,则在的某邻域内;有界性:若,则在的某邻域内,有界2.无穷小与无穷大(1)定义:以0为极限的变量称无穷小量;以为极限的变量称无穷大量;同一极限过程中,无穷小(除0外)的倒数为无穷大;无穷大的倒数为无穷小。注意:0是无穷小量;无穷大量必是无
6、界变量,但无界变量未必是无穷大量。例如当时,是无界变量,但不是无穷大量。(2)性质:有限个无穷小的和、积仍为无穷小;无穷小与有界量的积仍为无穷小;成立的充要条件是(,)(3)无穷小的比较(设,):若,则称是比高阶的无穷小,记为;特别称为的主部若,则称是比低阶的无穷小;若,则称与是同阶无穷小;若,则称与是等价无穷小,记为;若,()则称为的阶无穷小;(4)无穷大的比较:若,,且,则称是比高阶的无穷大,记为;特别称为的主部3.等价无穷小的替换..下载可编辑....若同一极限过程的无穷小量,,且存在,则注意:(1)无论极限过程,只要极限
7、过程中方框内是相同的无穷小就可替换;(2)无穷小的替换一般只用在乘除情形,不用在加减情形;(3)等价无穷小的替换对复合函数的情形仍实用,即若,,则4.极限运算法则(设,)(1)(2)特别地,,(3)()5.准则与公式(,)准则1:(夹逼定理)若,则准则2:(单调有界数列必有极限)若单调,且(),则存在(收敛)准则3:(主部原则);..下载可编辑....公式1:公式2:公式3:,一般地,公式4:6.几个常用极限(1),;(2),;(3),;(4);(5);(6)..下载可编辑..
此文档下载收益归作者所有