正弦定理(1)教学案例.doc

正弦定理(1)教学案例.doc

ID:48933596

大小:885.00 KB

页数:7页

时间:2020-02-25

正弦定理(1)教学案例.doc_第1页
正弦定理(1)教学案例.doc_第2页
正弦定理(1)教学案例.doc_第3页
正弦定理(1)教学案例.doc_第4页
正弦定理(1)教学案例.doc_第5页
资源描述:

《正弦定理(1)教学案例.doc》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、正弦定理(1)教学案例一、教学内容分析:《普通高中课程标准数学教科书·数学(必修5)》(人教A版)第一章《解三角形》:“正弦定理和余弦定理”的第1课。“解三角形”既是高中数学的基本内容,又有较强的应用性,在这次课程改革中,被保留下来,并独立成为一章。解三角形作为几何度量问题,应突出几何的作用和数量化的思想,为学生进一步学习数学奠定基础。本课“正弦定理”,作为单元的起始课,为后续内容作知识与方法的准备,是在学生已有的三角函数及向量知识的基础上,通过对三角形边角关系作量化探究,发现并掌握正弦定理(重要的解三

2、角形工具),解决简单的三角形度量问题。教学过程中,应发挥学生的主动性,通过探索发现、合情推理与演绎证明的过程,提高学生的思辨能力。二、学生学习情况分析:由于本课内容和一些与测量、几何计算有关的实际问题相关,教学中若能注意课程与生活实际的联系,注重知识的发生过程,定能激起学生的学习兴趣。当然本课涉及代数推理,定理证明中可能涉及多方面的知识方法,综合性强,学生学习方面有一定困难。三、设计思想:定理教学中有一种简陋的处理方式:简单直接的定理呈现、照本宣科的定理证明,然后是大剂量的“复制例题”式的应用练习。本课

3、采用实验探究、自主学习、合作交流的研究性学习方式,重点放在定理的形成、证明的探究及定理基本应用上,努力挖掘定理教学中蕴涵的思维价值。从实际问题出发,引入数学课题,最后把所学知识应用于实际问题。四、教学目标:让学生从已有的知识经验出发,通过对特殊三角形边角间数量关系的探求,发现正弦定理;再由特殊到一般,从定性到定量,探究在任意三角形中,边与其对角的关系,引导学生通过观察,猜想,比较,推导正弦定理,由此培养学生合情推理探索数学规律的数学思考能力;培养学生联想与引申的能力,探索的精神与创新的意识,同时通过三角

4、函数、向量与正弦定理等知识间的联系来帮助学生初步树立事物之间的普遍联系与辩证统一的唯物主义观点。五、教学重点与难点:本节课的重点是正弦定理的探索、证明及其基本应用;难点是正弦定理应用中“已知两边和其中一边的对角解三角形,判断解的个数”,以及逻辑思维能力的培养。435mCBA六、教学过程设计:(一)创设情境:问题1、在建设水口电站闽江桥时,需预先测量桥长AB,于是在江边选取一个测量点C,测得CB=435m,∠CBA=,∠BCA=。由以上数据,能测算出桥长AB吗?这是一个什么数学问题?引出:解三角形——已知

5、三角形的某些边和角,求其他的边和角的过程。[设计意图:从实际问题出发,引入数学课题。]师:解三角形,需要用到许多三角形的知识,你对三角形中的边角知识知多少?生:······,“大角对大边,大边对大角”师:“a>b>c←→A>B>C”,这是定性地研究三角形中的边角关系,我们能否更深刻地、从定量的角度研究三角形中的边角关系?引出课题:“正弦定理[设计意图:从联系的观点,从新的角度看过去的问题,使学生对于过去的知识有了新的认识,同时使新知识建立在已有知识的坚实基础上,形成良好的知识结构。](二)猜想、实验:1

6、、发散思维,提出猜想:从定量的角度考察三角形中的边角关系,猜想可能存在哪些关系?[学情预设:此处,学生根据已有知识“a>b>c←→A>B>C”,可能出现以下答案情形。如a/A=b/B=c/C,a/sinA=b/sinB=c/sinC,a/cosA=b/cosB=c/cosC,a/tanA=b/tanB=c/tanC,······等等。][设计意图:培养学生的发散思维,猜想也是一种数学能力]2、研究特例,提炼猜想:考察等边三角形、特殊直角三角形的边角关系,提炼出asinA=bsinB=csinC。3

7、、实验验证,完善猜想:这一关系式在任一三角形中是否成立呢?请学生以量角器、刻度尺、计算器为工具,对一般三角形的上述关系式进行验证,教师用几何画板演示。在此基础上,师生一起得出猜想,即在任意三角形中,有asinA=bsinB=csinC。[设计意图:着重培养学生对问题的探究意识和动手实践能力](三)证明探究:对此猜想,据以上直观考察,我们感情上是完全可以接受的,但数学需要理性思维。如何通过严格的数学推理,证明正弦定理呢?1、特殊入手,探究证明:在初中,我们已学过如何解直角三角形,下面就首先来探讨直角

8、三角形中,角与边的等式关系。在RtABC中,设BC=a,AC=b,AB=c,,根据锐角的正弦函数的定义,有,,又,则,从而在直角三角形ABC中,。2、推广拓展,探究证明:问题2:在锐角三角形ABC中,如何构造、表示“a与、b与sinB”的关系呢?探究1:能否构造直角三角形,将问题化归为已知问题?[学情预设:此处,学生可能出现以下答案情形。学生对直角三角形中证明定理的方法记忆犹新,可能通过以下三种方法构造直角三角形。生1:如图1,过C作BC边

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。