资源描述:
《河北省邯郸市2017届高三上学期质量检测(文数).doc》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库。
1、......河北省邯郸市2017届高三上学期质量检测数学(文科)第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.复数等于()A.B.C.D.2.设集合,则等于()A.B.C.D.3.若球的半径为4,且球心到平面的距离为,则平面截球所得截面圆的面积为()A.B.C.D.4.命题,命题抛物线的焦点到准线的距离为,那么下列命题为真命题的是()A.B.C.D.5.已知为数列的前项和,若且,则等于()A.6B.12C.16D.246.若,则()A.B.C.D.7.若,则的值为()A.B.C.D.8
2、.若正整数除以正整数后的余数为,则记为,例如..专业.专注.11......下面程序框图的算法源于我国古代闻名中外的《中国剩余定理》.执行该程序框图,则输出的等于()A.4B.8C.16D.329.如图是某几何体的三视图,则该几何体的体积为()A.6B.9C.12D.1810.设满足约束条件若,则仅在点处取得最大值的概率为()A.B.C.D.11.已知定义在上的奇函数在上递减,若对恒成立,则的取值范围为()A.B.C.D..专业.专注.11......12.已知这3个函数在同一直角坐标系中的部分图象如下图所示,则函数的图象的一条对称轴方程可以为()A.B.C.D.第
3、Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13.已知函数则.14.已知向量,若,则的取值范围为.15.在公差大于1的等差数列中,已知,则数列的前20项和为.16.直线与双曲线的左支、右支分别交于两点,为右顶点,为坐标原点,若,则该双曲线的离心率为.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.(本小题满分10分)在中,内角的对边分别是,已知.(1)若,求的面积;.专业.专注.11......(2)若,求的周长.18.(本小题满分12分)已知某企业近3年的前7个月的月利润(单位:百万元)如下面的折线图
4、所示:(1)试问这3年的前7个月中哪个月的平均利润最高?(2)通过计算判断这3年的前7个月的总利润的发展趋势;(3)试以第3年的前4个月的数据(如下表),用线性回归的拟合模式估测第3年8月份的利润.相关公式:.19.(本小题满分12分)已知数列的前项和,且成等比数列.(1)求数列的通项公式;(2)若,求数列的前项和.20.(本小题满分12分)四棱锥中,底面为矩形,平面平面,,为线段上一点,且,点分别为线段.专业.专注.11......的中点.(1)求证:平面;(2)若平面将四棱锥分成左右两部分,求这两部分的体积之比.21.(本小题满分12分)已知椭圆的焦距为2,过短
5、轴的一个端点与两个焦点的圆的面积为,过椭圆的右焦点作斜率为的直线与椭圆相交于两点,线段的中点为.(1)求椭圆的标准方程;(2)过点垂直于的直线与轴交于点,求的值.22.(本小题满分12分)已知函数.(1)当时,求曲线在点处的切线斜率;(2)讨论函数的单调性;(3)当函数有极值时,若对恒成立,求实数的取值范围..专业.专注.11......数学(文科)参考答案一、选择题1.A.2.A∵,∴.3.C设截面圆的半径为,则,∴.4.D∵真假∴为真命题.5.B∵,∴,∴.6.D∵,又,∴.7.D∵,∴.8.C,则输出.9.B该几何体是一个直三棱柱切去右上方部分所得,如下图所示
6、,其体积为.10.B作出不等式组表示的可行域,可知点为直线与的交点,所以数形结合可得直线的斜率,即..专业.专注.11......故由几何概型可得所求概率为.11.C由题可得在上递减,∴即对恒成立.设,则,∴当时,;当时,,∴,∴.12.C,由得,∴,,由图可知,在处没有意义的曲线是的图象,而的图象在上的第一个最高点为,从而,的图象为在上先增后减的曲线,剩下的那条曲线就是的图象.∵,∴,∴,∴,令故选C.13..14.∵,∴,∴.15.∵,∴.∵,∴..专业.专注.11......当,不合题意.当,∴.故数列的前20项和为.16.设直线与轴交于点,则,因为,所以,则
7、,联立与得,所以点的坐标为,则.17.(1)由正弦定理可得,∵,∴,由余弦定理可得,∴,∴的面积为.(2)由余弦定理可得,∴,∴的周长为.18.解:(1)由折线图可知5月和6月的平均利润最高.(2)第1年前7个月的总利润为(百万元),第2年前7个月的总利润为(百万元),第3年前7个月的总利润为(百万元),∴这3年的前7个月的总利润呈上升趋势.(3)∵,∴,∴,∴,.专业.专注.11......当时,(百万元),∴估计8月份的利润为940万元.19.解:(1)当时,.当时,,也满足,故.∵成等比数列,∴,∴,∴.则由余弦定理可得,∴.∴,∴.∵平面平面,平面平面,