八年级数学下册第4章一次函数4.5一次函数的应用(第2课时)练习(新版)湘教版.docx

八年级数学下册第4章一次函数4.5一次函数的应用(第2课时)练习(新版)湘教版.docx

ID:48875667

大小:109.85 KB

页数:6页

时间:2020-02-03

八年级数学下册第4章一次函数4.5一次函数的应用(第2课时)练习(新版)湘教版.docx_第1页
八年级数学下册第4章一次函数4.5一次函数的应用(第2课时)练习(新版)湘教版.docx_第2页
八年级数学下册第4章一次函数4.5一次函数的应用(第2课时)练习(新版)湘教版.docx_第3页
八年级数学下册第4章一次函数4.5一次函数的应用(第2课时)练习(新版)湘教版.docx_第4页
八年级数学下册第4章一次函数4.5一次函数的应用(第2课时)练习(新版)湘教版.docx_第5页
资源描述:

《八年级数学下册第4章一次函数4.5一次函数的应用(第2课时)练习(新版)湘教版.docx》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、第2课时建立一次函数模型解决预测类型的实际问题要点感知通过图表数据的规律,构建一次函数模型,然后通过函数模型检查所得结果是否__________,是否符合实际情况.预习练习一位母亲记录了儿子3~9岁的身高(单位:cm),由此建立身高与年龄的模型为y=7.19x+73.93.则下列说法中正确的是()A.身高与年龄是一次函数关系B.这个模型适合所有3~9岁的孩子C.预测这个孩子10岁时,身高一定在145.83cm以上D.这个孩子在3~9岁之内,年龄每增加1岁,身高平均增加约7.19cm知识点建立一次函数模型解决预测类型的实际问题1.如图,大拇指与小拇指尽量张开时,两指尖的距离称为指距.根据最近人体

2、构造学的研究成果表明,一般情况下人的身高h是指距d的一次函数.下表是测得的指距与身高的一组数据:根据上表解决下面这个实际问题:姚明的身高是226厘米,可预测他的指距约为()A.26.8厘米B.26.9厘米C.27.5厘米D.27.3厘米2.为了使学生能读到更多优秀书籍,某书店在出售图书的同时,推出一项租书业务,规定每租看1本书,若租期不超过3天,则收租金1.50元,从第4天开始每天另收0.40元,那么1本书租看7天归还,请你预测应收租金_________元.3.如图所示表示“龟兔赛跑”时路程与时间的关系,已知龟、兔上午8:00从同一地点出发,请你根据图中给出的信息预测,乌龟在_________

3、_点追上兔子.4.一根祝寿蜡烛长85cm,点燃时每小时缩短5cm.(1)请写出点燃后蜡烛的长y(cm)与蜡烛燃烧时间t(h)之间的函数关系式;(2)请你预测该蜡烛可点燃多长时间?5.某公司生产的一种时令商品每件成本为20元,经过市场调研发现,这种商品在未来20天内的日销售量m(件)与时间t(天)的关系如下表:通过认真分析上表的数据,用所学过的函数知识:(1)确定满足这些数据的m(件)与t(天)之间的函数关系式;(2)判断它是否符合预测函数模型.6.小明的爸爸用50万元购进一辆出租车(含经营权).在投入营运后,每一年营运的总收入为18.5万元,而各种费用的总支出为6万元,设该车营运x年后盈利y万

4、元.(1)y与x之间的函数关系式是_________________.(2)可预测该出租车营运__________年后开始盈利.7.某地夏季某月旱情严重,若该地10号、15号的人日均用水量分别为18千克和15千克,并一直按此趋势直线下降.当人日均用水量低于10千克时,政府将向当地居民送水.那么预测政府开始送水的日期为__________号.8.下表是近年来某地小学入学儿童人数的变化趋势情况,请你运用所学知识解决下列问题:(1)求入学儿童人数y(人)与年份x(年)的函数解析式;(2)请预测该地区从哪一年开始入学儿童的人数不超过1000人?9.张师傅驾车运送货物到某地出售,汽车出发前油箱有油50升

5、,行驶若干小时后,途中在加油站加油若干升,油箱中剩余油量y(升)与行驶时间t(小时)之间的关系如图所示.请根据图象回答下列问题:(1)汽车行驶多少小时后加油?中途加油多少升?(2)已知加油前、后汽车都以70千米/小时匀速行驶,如果加油站距目的地210千米,要到达目的地,请你预测油箱中的油是否够用?并说明理由.10.一水库的水位在最近5小时之内持续上涨,下表记录了这5个小时水位高度.(1)由记录表推出这5个小时中水位高度y(单位:米)随时间t(单位:时)变化的函数解析式,并在图中画出该函数图象;(2)据估计按这种上涨规律还会持续若干个小时,请预测再过多少小时水位高度将达到10.35米?参考答案要

6、点感知可靠预习练习D1.D2.3.103.18:004.(1)∵蜡烛的长等于蜡烛的原长减去燃烧的长度,∴y=85-5t;(2)∵蜡烛燃尽的时候蜡烛的长度y=0,∴85-5t=0.解得t=17.∴该蜡烛可点燃17小时.5.(1)设预测m(件)与t(天)之间的函数模型为m=kt+b,将和代入一次函数m=kt+b中,有解得∴m=-2t+96.故所求函数关系式为m=-2t+96.(2)经检验,其他点的坐标均适合以上解析式,∴符合预测函数模型.6.(1)y=12.5x-50(2)47.248.(1)y=-150x+303350;(2)∵y≤1000,∴-150x+303350≤1000,∴x≥2015.

7、∴从2016年起该地区入学儿童的人数不超过1000人.9.(1)由图象可知:汽车行驶3小时后加油,加油量:45-14=31(升);(2)由图可知汽车每小时用油(50-14)÷3=12(升),所以汽车要准备油210÷70×12=36(升),∵45升>36升,∴油箱中的油够用.10.(1)设函数的解析式为y=kt+b,由记录表得:解得函数的解析式为:y=0.05t+10.列表为:描点并连线为:(2)当

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。