三角函数的简单应用.ppt

三角函数的简单应用.ppt

ID:48740172

大小:389.50 KB

页数:19页

时间:2020-01-21

三角函数的简单应用.ppt_第1页
三角函数的简单应用.ppt_第2页
三角函数的简单应用.ppt_第3页
三角函数的简单应用.ppt_第4页
三角函数的简单应用.ppt_第5页
资源描述:

《三角函数的简单应用.ppt》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、锐角三角函数复习课题知识回顾知识回顾1一.锐角三角函数的概念正弦:把锐角A的对边与斜边的比叫做∠A的正弦,记作余弦:把锐角A的邻边与斜边的比叫做∠A的余弦,记作正切:把锐角A的对边与邻边的比叫做∠A的正切,记作对边a邻边b斜边c锐角A的正弦、余弦、正切都叫做∠A的锐角三角函数.对这些关系式要学会灵活变式运用知识回顾知识回顾2二.特殊角的三角函数值锐角的三角函数值有何变化规律呢?知识回顾知识回顾3三.解直角三角形由直角三角形中,除直角外的已知元素,求出所有未知元素的过程,叫做解直角三角形.1.什么叫解直角三角形?2.直角三角形中

2、的边角关系:∠A十∠B=90°归纳:只要知道其中的2个元素(至少有一个是边),就可以求出其余3个未知元素.(1)三边关系:(勾股定理)(2)两锐角的关系:(3)边角的关系:知识回顾知识回顾4四.解直角三角形的应用1.仰角和俯角在进行测量时,从下向上看,视线与水平线的夹角叫做仰角;从上往下看,视线与水平线的夹角叫做俯角.铅直线水平线视线视线仰角俯角坡度(坡比):坡面的铅直高度h和水平距离l的比叫做坡度,用字母i表示,则2.坡度、坡角坡角:坡面与水平面的夹角叫做坡角,用字母α表示.hl知识回顾坡度通常写成的形式.典型例题解:原式=

3、2×+1×=1+例1.计算2sin30°+tan45°×cos60°=步骤:一“代”二“算”例2.若,则锐角α=30°点拨:本题是由特殊角的三角函数值求角度,首先将原式变形为tanα=,从而求得α的度数.典型例题例3.在Rt△ABC中,∠C=90°,∠A=30°,a=5,求b、c的大小.解:∵sinA=a/c,∴c=a/sinA=5/sin30=5/(1/2)=10.ABC530°∠B=90°-∠A=90°-30°=60°,∵tanB=b/a,∴b=a·tanB=5·tan60°=解直角三角形分为两类:一是已知一边一角解直角三

4、角形;二是已知两边解直角三角形.典型例题典型例题2例4.如图,在△ABC中,AD是BC边上的高,若tanB=cos∠DAC.(1)AC与BD相等吗?说明理由;DCBA故BD=AC解:(1)在Rt△ABD和△ACD中,tanB=,    =因为tanB=cos∠DAC,所以  =cos∠DAC(2)若sinC=  ,BC=12,求AD的长.典型例题例4.如图,在△ABC中,AD是BC边上的高,若tanB=cos∠DAC.(1)AC与BD相等吗?说明理由;DCBA(2)若sinC=  ,BC=12,求AD的长.(2)设AC=13k

5、,AD=12k,所以CD=5k,又AC=BD=13k,在Rt△ACD中,因为sinC=所以BC=18k=12,故k=所以AD=12×=8及时反馈及时反馈11.若,则锐角α=2.若,则锐角α=3.计算:45°80°4.如图,在Rt△ABC中,∠C=90,b=,c=4.则a=,∠B=,∠A=.ABC260°30°及时反馈D5.如果那么△ABC是()A.直角三角形B.锐角三角形C.钝角三角形D.等边三角形典型例题典型例题3例5.海中有一个小岛P,它的周围18海里内有暗礁,渔船跟踪鱼群由西向东航行,在点A测得小岛P在北偏东60°方向上

6、,航行12海里到达B点,这时测得小岛P在北偏东45°方向上.如果渔船不改变航线继续向东航行,有没有触礁危险?请说明理由.D分析:作PD⊥BC,设PD=x,则BD=x,AD=x+12,根据AD=PD,得x+12=x,求出x的值,再比较PD与18的大小关系.解:有触礁危险.理由:过点P作PD⊥AC于D.设PD为x,在Rt△PBD中,∠PBD=90°-45°=45°.∴BD=PD=x,AD=12+x.在Rt△PAD中,∵∠PAD=90°-60°=30°,∴渔船不改变航线继续向东航行,有触礁危险.典型例题D典型例题例6.我市某乡镇学校

7、教学楼后面靠近一座山坡,坡面上是一块平地,如图所示.BC∥AD,斜坡AB=40米,坡角∠BAD=60°,为防夏季因瀑雨引发山体滑坡,保障安全,学校决定对山坡进行改造.经地质人员勘测,当坡角不超过45°时,可确保山体不滑坡,改造时保持坡脚A不动,从坡顶B沿BC削进到E处,问BE至少是多少米(结果保留根号)?GF分析:就是当∠EAD=45°时,求BE的长,作BF⊥AD,EG⊥AD,则BE=GF=AG-AF.典型例题过点B作BF⊥AD,在Rt△ABF中,AB=40,∠BAD=60°,过点E作EG⊥AD,在Rt△ABF中,GE=BF当

8、∠EAD=45°时,点评:题目中没有直角三角形时,我们可以作辅助线构造直角三角形,作辅助线时要考虑如何充分和便利的使用已知条件。GF解:6.直角三角形纸片的两直角边BC为6,AC为8,现将△ABC,按如图折叠,使点A与点B重合,折痕为DE,则tan∠CBE的值是.ABC68E

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。