欢迎来到天天文库
浏览记录
ID:48740163
大小:1.32 MB
页数:22页
时间:2020-01-21
《三角形中的垂直平分线.pptx》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、BS八(下)教学课件第一章三角形的证明1.3线段的垂直平分线第2课时三角形三边的垂直平分线及作图1.理解并掌握三角形三边的垂直平分线的性质,能够运用其解决实际问题.(重点)2.能够利用尺规作出三角形的垂直平分线.学习目标ABCD1.回顾一下线段的垂直平分线的性质定理和判定定理.2.线段的垂直平分线的作法.性质:线段垂直平分线上的点到线段两端的距离相等.判定:到一条线段两个端点距离相等的点,在这条线段的垂直平分线上.复习引入画一画:利用尺规作三角形三条边的垂直平分线,完成之后你发现了什么?发现:三角形三边的垂直平分线交于一点.这一点到三角形三个顶点的距离相等.怎样
2、证明这个结论呢?新课讲解三角形三边的垂直平分线的性质1点拨:要证明三条直线相交于一点,只要证明其中两条直线的交点在第三条直线上即可.思路可表示如下:试试看,你会写出证明过程吗?BCAPlnml是AB的垂直平分线m是BC的垂直平分线PA=PBPB=PCPA=PC点P在AC的垂直平分线上新课讲解证明:连接PA,PB,PC.∵点P在AB,AC的垂直平分线上,∴PA=PB,PA=PC(线段垂直平分线上的点到线段两端距离相等).∴PB=PC.∴点P在BC的垂直平分线上(到线段两端距离相等的点在线段的垂直平分线上).BCAPlnm新课讲解定理:三角形三条边的垂直平分线相交于
3、一点,并且这一点到三个顶点的距离相等.应用格式:∵点P为△ABC三边垂直平分线的交点,∴PA=PB=PC.ABCP新课讲解分别作出锐角三角形、直角三角形、钝角三角形三边的垂直平分线,说明交点分别在什么位置.锐角三角形三边的垂直平分线交点在三角形内;直角三角形三边的垂直平分线交点在斜边上;钝角三角形三边的垂直平分线交点在三角形外.新课讲解练一练做一做:(1)已知三角形的一条边及这条边上的高,你能作出三角形吗?如果能,能作几个?所作出的三角形都全等吗?已知:三角形的一条边a和这边上的高h.求作:△ABC,使BC=a,BC边上的高为h.A1DCBAah(D)CBAah
4、A1DCBAahA1提示:能作出无数个这样的三角形,它们并不全等.新课讲解尺规作图2(2)已知等腰三角形的底边,你能用尺规作出等腰三角形吗?如果能,能作几个?所作出的三角形都全等吗?这样的等腰三角形有无数多个.根据线段垂直平分线上的点到线段两个端点的距离相等,只要作底边的垂直平分线,取它上面除底边的中点外的任意一点,和底边的两个端点相连接,都可以得到一个等腰三角形.如图所示,这些三角形不都全等.新课讲解(3)已知等腰三角形的底及底边上的高,你能用尺规作出等腰三角形吗?能作几个?这样的等腰三角形只有两个,并且它们是全等的,分别位于已知底边的两侧.新课讲解已知:线段
5、a,h.求作:△ABC,使AB=AC,BC=a,高AD=h.NMDCBahA作法:1.作BC=a;2.作线段BC的垂直平分线MN交BC于D点;3.以D为圆心,h长为半径作弧交MN于A点;4.连接AB,AC.△ABC就是所求作的三角形.新课讲解例11.已知直线l和其上一点P,利用尺规作l的垂线,使它经过点P.P●l新课讲解练一练ABCP已知:直线l和l上一点P.求作:PC⊥l.作法:1.以点P为圆心,以任意长为半径作弧,与直线l相交于点A和B.2.作线段AB的垂直平分线PC.直线PC就是所求l的垂线.l新课讲解BA作法:2.已知直线l和线外一点P,利用尺规作l的垂
6、线,使它经过点P.(1)先以P为圆心,大于点P到直线l的垂直距离R为半径作圆,交直线l于A,B.(2)分别以A、B为圆心,大于R的长为半径作圆,相交于C、D两点.(3)过两交点作直线l',此直线为l过P的垂线.P●CD新课讲解1.如图,等腰△ABC中,AB=AC,∠A=20°.线段AB的垂直平分线交AB于D,交AC于E,连接BE,则∠CBE等于()A.80°B.70°C.60°D.50°CBADEC随堂即练2.下列说法错误的是()A.三角形三条边的垂直平分线必交于一点B.如果等腰三角形内一点到底边两端点的距离相等,那么过这点与顶点的直线必垂直于底边C.平面上只存
7、在一点到已知三角形三个顶点距离相等D.三角形关于任一边上的垂直平分线成轴对称D【解析】选D.等边三角形关于任一边上的垂直平分线成轴对称,等腰三角形关于底边上的垂直平分线成轴对称,一般三角形不是轴对称图形,D选项没有说明三角形的形状,所以D选项说法错误.随堂即练3.如图所示,在△ABC中,∠B=22.5°,AB的垂直平分线交BC于点D,DF⊥AC于点F,并与BC边上的高AE交于G.求证:EG=EC.随堂即练FABEGDC证明:连接AD.∵点D在线段AB的垂直平分线上,∴DA=DB,∴∠DAB=∠B=22.5°,∴∠ADE=∠DAB+∠B=45°.∵AE⊥BC,∴∠
8、DAE=∠ADE=45°
此文档下载收益归作者所有