资源描述:
《《空间向量的线性运算》课件1.ppt》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、3.1.1空间向量的线性运算复习回顾:平面向量1、定义:既有大小又有方向的量。几何表示法:用有向线段表示字母表示法:用小写字母表示,或者用表示向量的有向线段的起点和终点字母表示。3、相等向量:长度相等且方向相同的向量ABCD2、表示方法2、平面向量的加法、减法与数乘运算向量加法的三角形法则ab向量加法的平行四边形法则ba向量减法的三角形法则aba-ba+ba(>0)a(<0)向量的数乘a3、平面向量的加法、减法与数乘运算律加法交换律:加法结合律:数乘分配律:推广⑴首尾相接的若干向量之和,等于由起始向量的起点指向末尾向量的终点的向量.即:⑵首尾相接的若
2、干向量构成一个封闭图形,则它们的和为零向量.即:ababOABb结论:空间任意两个向量都是共面向量,所以它们可用同一平面内的两条有向线段表示。因此凡是涉及空间任意两个向量的问题,平面向量中有关结论仍适用于它们。思考:它们确定的平面是否唯一?思考:空间任意两个向量是否可能异面?ababab+OABbCa(>0)a(<0)空间向量的数乘空间向量的加减法平面向量概念加法减法数乘运算运算律定义表示法相等向量减法:三角形法则加法:三角形法则或平行四边形法则空间向量及其加减与数乘运算空间向量具有大小和方向的量数乘:a,为正数,负数,零加法交换律加法结合律数乘分配
3、律加法交换律数乘分配律加法:三角形法则或平行四边形法则减法:三角形法则数乘:a,为正数,负数,零加法结合律(零向量与任意向量共线)推广⑴首尾相接的若干向量之和,等于由起始向量的起点指向末尾向量的终点的向量.即:⑵首尾相接的若干向量构成一个封闭图形,则它们的和为零向量.即:ABCDABCDA1B1C1D1ABCDa平行六面体:平行四边形ABCD沿向量平移到A1B1C1D1的轨迹所形成的几何体.a记做ABCD-A1B1C1D1例1:已知平行六面体ABCD-A1B1C1D1,化简下列向量表达式,并标出化简结果的向量。(如图)ABCDA1B1C1D1GM始点
4、相同的三个不共面向量之和,等于以这三个向量为棱的平行六面体的以公共始点为始点的对角线所示向量例2:已知平行六面体ABCD-A1B1C1D1,求满足下列各式的x的值。ABCDA1B1C1D1例2:已知平行六面体ABCD-A1B1C1D1,求满足下列各式的x的值。ABCDA1B1C1D1例2:已知平行六面体ABCD-A1B1C1D1,求满足下列各式的x的值。ABCDA1B1C1D1例2:已知平行六面体ABCD-A1B1C1D1,求满足下列各式的x的值。ABCDA1B1C1D1例3M,N分别是四面体ABCD的棱AB,CD的中点,求证:ADNCBM证明:显然
5、由已知得①②①②+∴ABMCGD练习1在空间四边形ABCD中,点M、G分别是BC、CD边的中点,化简ABMCGD(2)原式练习1在空间四边形ABCD中,点M、G分别是BC、CD边的中点,化简ABCDDCBA练习2在立方体AC1中,点E是面AC’的中心,求下列各式中的x,y.EABCDDCBA练习2E在正方体AC1中,点E是面AC’的中心,求下列各式中的x,y.ABCDDCBA练习2E在立方体AC1中,点E是面AC’的中心,求下列各式中的x,y.平面向量概念加法减法数乘运算运算律定义表示法相等向量减法:三角形法则加法:三角形法则或平行四边形法则空间向量
6、具有大小和方向的量数乘:a,为正数,负数,零加法交换律加法结合律数乘分配律小结加法交换律数乘分配律加法结合律类比思想数形结合思想数乘:a,为正数,负数,零作业思考题:考虑空间三个向量共面的充要条件.谢谢!课本第81.82页练习题、习题能力培养