欢迎来到天天文库
浏览记录
ID:48712318
大小:330.68 KB
页数:10页
时间:2020-02-27
《四川省泸州市泸县第四中学2019_2020学年高二数学上学期期末模拟考试试题理.docx》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、四川省泸州市泸县第四中学2019-2020学年高二数学上学期期末模拟考试试题理第I卷(选择题共60分)一、选择题(本大题共12小题,每小题5分,共60分.在每个小题所给出的四个选项中,只有一项是符合题目要求的,把正确选项的代号填在答题卡的指定位置.)1.设命题:,,则¬p为A.,B.,C.,D.,2.直线经过原点和,则它的倾斜角是A.135°B.45°C.45°或135°D.−45°3.已知某单位有职工120人,其中男职工90人,现采用分层抽样的方法(按男、女分层)抽取一个样本,若已知样本中有27名男职工,则样本容量为A.30B.36C.4
2、0D.无法确定4.某城市收集并整理了该市2017年1月份至10月份各月最低气温与最高气温(单位;)的数据,绘制了下面的折线图。已知该市的各月最低气温与最高气温具有较好的线性关系,则根据该折线图,下列结论错误的是A.最低气温与最高气温为正相关B.10月的最高气温不低于5月的最高气温C.月温差(最高气温减最低气温)的最大值出现在1月D.最低气温低于的月份有4个5.在一段时间内有2000辆车通过高速公路上的某处,现随机抽取其中的200辆进行车速统计,统计结果如右面的频率分布直方图所示.若该处高速公路规定正常行驶速度为90km/h~120km/h,
3、试估计2000辆车中,在这段时间内以正常速度通过该处的汽车约有A.30辆B.1700辆C.170辆D.300辆6.已知椭圆的焦点在轴上,且离心率,则A.9B.5C.25D.-97.执行如图所示的程序框图,运行相应的程序,则输出的的值为A.B.C.D.8.已知,则“”是“”的A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件9.两圆与的位置关系是A.内含B.相交C.相切D.相离10.已知点,抛物线的焦点为,射线与抛物线C相交于点,与其准线相交于点,若,则的值等于A.B.2C.4D.811.若直线与曲线有两个交点,则实数的
4、取值范围是A.B.C.D.12.设点是双曲线与圆在第一象限的交点,是双曲线的两个焦点,且,则双曲线的离心率为A.B.C.13D.第Ⅱ卷(非选择题共90分)二、填空题(本大题共4小题,每小题5分,满分20分)13.已知命题“若,则”,其逆命题为 .14.如图,茎叶图记录了甲、乙两组各3名同学在期末考试中的数学成绩,则方差较小的那组同学成绩的方差为_______.15.直线垂直于,且平分圆:,则直线的方程为 .16.抛物线的焦点为为抛物线上一点,若的外接圆与抛物线的准线相切(为坐标原点),且外接圆的面积为,则 .三、解答题(共70分
5、,解答应写出文字说明、证明过程或演算步骤)17.(10分)已知(Ⅰ)当时,判断是的什么条件;(Ⅱ)若“非”是“非”的充分不必要条件,求实数的取值范围;18.(12分)泸州车天地关于某品牌汽车的使用年限(年)和所支出的维修费用(千元)由如表的统计资料:234562.13.45.96.67.0(Ⅰ)画出散点图并判断使用年限与所支出的维修费用是否线性相关;如果线性相关,求回归直线方程;(Ⅱ)若使用超过8年,维修费用超过1.5万元时,车主将处理掉该车,估计第10年年底时,车主是否会处理掉该车?()19.(12分)已知圆的圆心在直线上,且圆经过点.(
6、Ⅰ)求圆的标准方程;(Ⅱ)直线过点且与圆相交,所得弦长为4,求直线的方程.20.(12分)设为抛物线的焦点,是抛物线上的两个动点,为坐标原点.(Ⅰ)若直线经过焦点,且斜率为2,求;(Ⅱ)当时,求的最小值.21.(12分)在四棱锥中,平面,,底面是梯形,,,.(Ⅰ)求证:平面平面;(Ⅱ)设为棱上一点,,试确定的值使得二面角为.22.(12分)已知椭圆的左、右焦点分别为,离心率为,点在椭圆上,且的面积的最大值为.(Ⅰ)求椭圆的方程;(Ⅱ)已知直线与椭圆交于不同的两点,若在轴上存在点,使得,求点的横坐标的取值范围.2019年秋四川省泸县第四中学高
7、二期末模拟考试理科数学试题答案1.A2.A3.B4.D5.B6.C7.D8.B9.B10.B11.C12.A13.14.15.16.17.解:(Ⅰ)则当m=4时,q:当时是的充分不必要条件(Ⅱ)“非”是“非”的充分不必要条件,是的充分不必要条件.,实数的取值范围为.18.(1)作出散点图如图:由散点图可知使用年限与所支出的维修费是线性相关的. 列表如下:由以上数据可得,所以,故回归直线方程为.(2)当时,,因此可估计使用10年维修费用是12.8千元,即维修费用是1.28万元,因为维修费用低于1.5万元,所以车主不会处理该车.19.(1)解:
8、设圆心为,则应在的中垂线上,其方程为,由,即圆心坐标为又半径,故圆的方程为(2)解:点在圆内,且弦长为,故应有两条直线.圆心到直线距离.①当直线的斜率不存在时,直线的方程为,此时
此文档下载收益归作者所有