江西省上高二数学中,丰城中学2020届高三数学11月联考试题 理(含解析).doc

江西省上高二数学中,丰城中学2020届高三数学11月联考试题 理(含解析).doc

ID:48691164

大小:166.50 KB

页数:12页

时间:2020-02-27

江西省上高二数学中,丰城中学2020届高三数学11月联考试题 理(含解析).doc_第1页
江西省上高二数学中,丰城中学2020届高三数学11月联考试题 理(含解析).doc_第2页
江西省上高二数学中,丰城中学2020届高三数学11月联考试题 理(含解析).doc_第3页
江西省上高二数学中,丰城中学2020届高三数学11月联考试题 理(含解析).doc_第4页
江西省上高二数学中,丰城中学2020届高三数学11月联考试题 理(含解析).doc_第5页
资源描述:

《江西省上高二数学中,丰城中学2020届高三数学11月联考试题 理(含解析).doc》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、江西省上高二数学中,丰城中学2020届高三数学11月联考试题理(含解析)一、选择题(本大题共12小题)1.已知集合,,则A.B.C.D.2.已知i为虚数单位,若复数,则A.B.C.D.13.设随机变量,若,则实数a的值为A.1B.2C.3D.44.将函数的图象上所有的点横坐标扩大到原来的2倍纵坐标不变,再把图象上各点的向右平移个单位长度,则所得图象的解析式为A.B.C.D.5.在等差数列中,,则数列的前11项和A.8B.16C.22D.446.因市场战略储备的需要,某公司1月1日起,每月1日购买了相同金额的某种物资,连续购买了4次.由于市场变化,5月1日该公司不得不将

2、此物资全部卖出.已知该物资的购买和卖出都是以份为计价单位进行交易,且该公司在买卖的过程中赢利,那么下面三个折线图中反映了这种物资每份价格单位:万元的可能变化情况是A.B.C.D.7.定义在R上的偶函数满足,当时,,则A.B.C.D.8.函数的部分图象大致是A.B.C.D.9.已知椭圆,F为椭圆在y轴正半轴的焦点,,P是椭圆上任意一点,则的最大值为A.B.C.D.111.如图来自古希腊数学家希波克拉底所研究的平面几何图形.此图由两个圆构成,O为大圆圆心,线段AB为小圆直径.的三边所围成的区域记为I,黑色月牙部分记为Ⅱ,两小月牙之和斜线部分部分记为Ⅲ在整个图形中随机取一点

3、,此点取自Ⅰ,Ⅱ,Ⅲ的概率分别记为,,,则A.B.C.D.2.定义在R上的函数满足,且对任意的不相等的实数,有成立,若关于x的不等式在上恒成立,则实数m的取值范围  A.B.C.D.3.在三棱锥中,,,,点P在平面ACD内,且,设异面直线BP与CD所成角为,则的最小值为A.B.C.D.二、填空题(本大题共4小题)4.已知平面向量的夹角为,且则______.5.正数项数列的前n项和为,满足,且,则数列的通项公式为______.6.已知,则的展开式中,常数项为______.7.中,角A、B、C所对的边分别为a、b、c,下列命题正确的是______写出正确命题的编号.总存在

4、某内角,使;若,则;存在某钝角,有;若,则的最小角小于.三、解答题(本大题共7小题)8.设函数求函数的单调递增区间和对称中心;在锐角中,若,且能盖住的最小圆的面积为,求周长的取值范围.9.如图,三棱柱的所有棱长均为2,底面侧面,,P为的中点,.证明:若M是AC棱上一点,满足,求二面角的余弦值.111.某地4个蔬菜大棚顶部,阳光照在一棵棵蔬菜上.这些采用水培、无土栽培方式种植的各类蔬菜,成为该地区居民争相购买的对象.过去50周的资料显示,该地周光照量小时都在30以上.其中不足50的周数大约有5周,不低于50且不超过70的周数大约有35周,超过70的大约有10周.根据统计

5、某种改良黄瓜每个蔬菜大棚增加量百斤与每个蔬菜大棚使用农夫1号液体肥料千克之间对应数据为如图所示的折线图:Ⅰ依据数据的折线图,用最小二乘法求出y关于x的线性回归方程;并根据所求线性回归方程,估计如果每个蔬菜大棚使用农夫1号肥料10千克,则这种改良黄瓜每个蔬菜大棚增加量y是多少斤?Ⅱ因蔬菜大棚对光照要求较大,某光照控制仪商家为应对恶劣天气对光照的影响,为该基地提供了部分光照控制仪,该商家希望安装的光照控制仪尽可能运行,但每周光照控制仪最多可运行台数受周光照量X限制,并有如下关系:周光照量单位:小时光照控制仪最多可运行台数321若某台光照控制仪运行,则该台光照控制仪周利润为

6、5000元;若某台光照控制仪未运行,则该台光照控制仪周亏损800元,欲使商家周总利润的均值达到最大,应安装光照控制仪多少台?附:回归方程系数公式:,.2.已知椭圆的左,右焦点分别为,,离心率为,P是椭圆C上的一个动点,且面积的最大值为.求椭圆C的方程;设斜率存在的直线与椭圆C的另一个交点为Q,是否存在点,使得?若存在,求出t的取值范围;若不存在,请说明理由.111.已知.求函数的极值;设,对于任意,,总有成立,求实数a的取值范围.2.已知曲线C的参数方程为为参数;以极点O为原点,极轴为x轴的非负半轴建立平面直角坐标系,直线l:,与曲线C相交于M、N两点.求曲线C的极坐

7、标方程;记线段MN的中点为P,若恒成立,求实数的取值范围.3.设函数.求不等式的解集;若存在,使得不等式成立,求实数a的取值范围.11答案和解析1.【答案】D【解析】解:,;,.故选:D.可解出集合M,N,然后进行并集、交集的运算即可.考查描述法的定义,以及并集、交集的运算,分式不等式的解法.2.【答案】C【解析】解:根据题意,复数,则,,则;故选:C.根据题意,计算可得,进而求出的值,据此计算可得答案.本题考查复数和复数模的计算,关键是求出z,属于基础题.3.【答案】A【解析】解:随机变量,,由,可得与关于直线对称,则,即.故选:A.由已知可得,由

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。