欢迎来到天天文库
浏览记录
ID:48680093
大小:266.00 KB
页数:6页
时间:2020-02-27
《基本初等函数知识点总结.doc》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库。
1、..高一数学必修1知识点总结基本初等函数一、指数函数(一)指数与指数幂的运算1.根式的概念:一般地,如果,那么叫做的次方根,其中>1,且∈*.u负数没有偶次方根;0的任何次方根都是0,记作。当是奇数时,,当是偶数时,2.分数指数幂正数的分数指数幂的意义,规定:,u0的正分数指数幂等于0,0的负分数指数幂没有意义3.实数指数幂的运算性质(1)·;(2);(3).(二)指数函数及其性质1、指数函数的概念:一般地,函数叫做指数函数,其中x是自变量,函数的定义域为R...下载可编辑....注意:指数函数
2、的底数的取值范围,底数不能是负数、零和1.2、指数函数的图象和性质a>103、式.两个重要对数:常用对数:以10为底的对数;自然对数:以无理数为底的对数的对数.u指数式与对数式的互化幂值真数=N=b底数指数对数(二)对数的运算性质如果,且,,,那么:·+;-;.注意:换底公式(,且;,且;).利用换底公式推导下面的结论(1);(2).(二)对数函数1、对数函数的概念:函数,且叫做对数函数,其中..下载可编辑....是自变量,函数的定义域是(0,+∞).注意:对数函数的定义与指数函数类似,都是形式定义,注意辨别。如:,都不是对数函数,而只能称其为对数型函数.对数函数对底数的4、限制:,且.2、对数函数的性质:a>105、,当从右边趋向原点时,图象在轴右方无限地逼近轴正半轴,当趋于时,图象在轴上方无限地逼近轴正半轴.例题:1.已知a>0,a0,函数y=ax与y=loga(-x)的图象只能是 ( ) 2.计算:(1)=;(2)=3.函数y=log(2x2-3x+1)的递减区间为4.若函数在区间上的最大值是最小值的3倍,则a=5.已知,(1)求的定义域(2)求使..下载可编辑....的的取值范围6.7..8..下载可编辑..
3、式.两个重要对数:常用对数:以10为底的对数;自然对数:以无理数为底的对数的对数.u指数式与对数式的互化幂值真数=N=b底数指数对数(二)对数的运算性质如果,且,,,那么:·+;-;.注意:换底公式(,且;,且;).利用换底公式推导下面的结论(1);(2).(二)对数函数1、对数函数的概念:函数,且叫做对数函数,其中..下载可编辑....是自变量,函数的定义域是(0,+∞).注意:对数函数的定义与指数函数类似,都是形式定义,注意辨别。如:,都不是对数函数,而只能称其为对数型函数.对数函数对底数的
4、限制:,且.2、对数函数的性质:a>105、,当从右边趋向原点时,图象在轴右方无限地逼近轴正半轴,当趋于时,图象在轴上方无限地逼近轴正半轴.例题:1.已知a>0,a0,函数y=ax与y=loga(-x)的图象只能是 ( ) 2.计算:(1)=;(2)=3.函数y=log(2x2-3x+1)的递减区间为4.若函数在区间上的最大值是最小值的3倍,则a=5.已知,(1)求的定义域(2)求使..下载可编辑....的的取值范围6.7..8..下载可编辑..
5、,当从右边趋向原点时,图象在轴右方无限地逼近轴正半轴,当趋于时,图象在轴上方无限地逼近轴正半轴.例题:1.已知a>0,a0,函数y=ax与y=loga(-x)的图象只能是 ( ) 2.计算:(1)=;(2)=3.函数y=log(2x2-3x+1)的递减区间为4.若函数在区间上的最大值是最小值的3倍,则a=5.已知,(1)求的定义域(2)求使..下载可编辑....的的取值范围6.7..8..下载可编辑..
此文档下载收益归作者所有