欢迎来到天天文库
浏览记录
ID:48677014
大小:1.22 MB
页数:52页
时间:2020-01-19
《数学人教版九年级下册相似三角形的判定定理1.ppt》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、相似三角形对应角相等、对应边成比例的三角形叫做相似三角形。ABCEDF相似的表示方法符号:∽读作:相似于相似比AB:A1B1=BC:B1C1=CD:C1D1=k时,ABCA1B1C1则△ABC与△A1B1C1的相似比为k.或△A1B1C1与△ABC的相似比为.这两个风筝图形相似,观察并思考:ABAA1B1C1大胆猜想,那么,若已知AB∥A1B1,能否得出△ABC1∽△A1B1C1AB∥A1B1除了根据相似三角形的定义来判断是否相似,还有其它的方法吗?已知:DE//BC,且D是边AB的中点,DE交AC于E.猜想:△ADE与△
2、ABC有什么关系?并证明。ABCDE证明:且∠A=∠A∵DE//BC∴∠1=∠B,∠2=∠C∴△ADE与△ABC的对应角相等相似。12三角形的中位线截得的三角形与原三角形相似,相似比。∴四边形DBFE是平行四边形∴DE=BF,DB=EF∴△ADE∽△ABCABCDEF过E作EF//AB交BC于F又∵DE//BC又∵AD=DB∴AD=EF∵∠A=∠3,∠2=∠C∴△ADE≌△EFC∴DE=FC=BF,∴∴∴△ADE与△ABC的对应边成比例23AE=EC已知:DE//BC,△ADE与△ABC有什么关系?猜想:△ADE与△ABC
3、有什么关系?相似。ABCDEF当点D在AB上任意一点时,上面的结论还成立吗?12你能证明吗?平行于三角形一边的直线和其他两边相交,所构成的三角形与原三角形相似。知识要点平行于三角形一边的定理ABCDE即:在△ABC中,如果DE∥BC,那么△ADE∽△ABCA型你还能画出其他图形吗?平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与三角形相似。DEACB延伸即:如果DE∥BC,那么△ADE∽△ABC你能证明吗?X型平行于三角形一边的直线截其它两边,所得的对应线段成比例。推论ABCDE即:在△ABC中,如
4、果DE∥BC,那么(上比全,全比上)(上比下,下比上)(下比全,全比下)ABCDE相似具有传递性△ADE∽△ABCMN如果再作MN∥DE,共有多少对相似三角形?△AMN∽△ADE△AMN∽△ABC共有三对相似三角形。定义判定方法全等三角形相似三角形回顾并思考三角、三边对应相等的两个三角形全等三角对应相等,三边对应成比例的两个三角形相似角边角ASA角角边AAS边边边SSS边角边SAS斜边与直角边HL判定三角形相似,是不是也有这么多种方法呢?边边边SSS已知:△ABC∽△A1B1C1.A1B1C1ABC求证:有效利用判定定理一
5、去求证。探究1证明:在线段(或它的延长线)上截取,过点D作,交于点E根据前面的定理可得.A1B1C1ABCDE∴又A1B1C1ABCDE∴∴∴(SSS)∵∴如果两个三角形的三组对应边的比相等,那么这两个三角形相似。知识要点判定三角形相似的定理之一△ABC∽△A1B1C1.即:如果那么A1B1C1ABC三边对应成比例,两三角形相似。边边边SSS√求证:∠BAD=∠CAE。ADCEB∴ΔABC∽ΔADE∴∠BAC=∠DAE∴∠BAC-∠DAC=∠DAE-∠DAC即∠BAD=∠CAE小练习已知:解:∵边角边SAS探究2已知:△A
6、BC∽△A1B1C1.A1B1C1ABC求证:∠B=∠B1.你能证明吗?如果两个三角形的两组对应边的比相等,并且相应的夹角相等,那么这两个三角形相似。知识要点判定三角形相似的定理之二两边对应成比例,且夹角相等,两三角形相似。边角边SAS√A1B1C1ABC△ABC∽△A1B1C1.即:如果∠B=∠B1.那么大家一起画一个三角形,三个角分别为60°、45°、75°,大家画出的三角形相似吗?同桌的同学,通过测量对应边的长度进行比较。探究3即:如果一个三角形的三个角分别与另一个三角形的三个角对应相等,那么这两个三角形______
7、_。相似一定需要三个角吗?角边角ASA角角边AAS角角AAA1B1C1ABC已知:△ABC∽△A1B1C1.求证:∠A=∠A1,∠B=∠B1.你能证明吗?如果两个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似。知识要点判定三角形相似的定理之三两角对应相等,两三角形相似。角角AAA1B1C1ABC△ABC∽△A1B1C1.即:如果那么√∠A=∠A1,∠B=∠B1.如果两个三角形有一个内角对应相等,那么这两个三角形一定相似吗?一角对应相等的两个三角形不一定相似。△ACD∽△CBD∽△ABC小练习找出图中所有
8、的相似三角形。“双垂直”三角形BDAC有三对相似三角形:△ACD∽△CBD△CBD∽△ABC△ACD∽△ABC常用的成比例的线段:常用的相等的角:∠A=∠DCB;∠B=∠ACDBDAC例题已知:DE∥BC,EF∥AB.求证:△ADE∽△EFC.AEFBCD解:∵DE∥BC,EF∥AB(已知)∴∠ADE=
此文档下载收益归作者所有