机器学习大作业.doc

机器学习大作业.doc

ID:48635700

大小:630.22 KB

页数:17页

时间:2020-01-30

机器学习大作业.doc_第1页
机器学习大作业.doc_第2页
机器学习大作业.doc_第3页
机器学习大作业.doc_第4页
机器学习大作业.doc_第5页
资源描述:

《机器学习大作业.doc》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库

1、机器学习大作业支持向量机是基于统计学习理论的结构风险最小化原则的,它将最大分界面分类器思想和基于核的方法结合在一起,表现出了很好的泛化能力。由于SVM方法不仅考虑了对渐进性能的要求,而且在现有有限信息的条件下得到最优结果,并且能够根据有限的样本信息在模型的复杂性和学习能力之间寻求最佳折中,从而获得最好的推广能力。SVM主要是应用于分类,简单而言,就是如果有一堆已经分好类的东西(可是分类的依据是未知的),当有新的未知数据进来时,SVM能够预测这个新的数据要分到哪一堆去。第一章理论知识1.1最优间隔分类器SVM的主要思

2、想是针对两类分类问题,在高维空间寻找一个最优分类超平面作为分类平面,来保证最小的分类错误率。我们的目标是寻找一个超平面,使得离超平面比较近的点有更大的间距,也就是说,我们不考虑所有的点都必须远离超平面,我们关心的只是想要求得的超平面能够使得所有点中离它最近的点具有最大间距。形象的说,我们将上面的图看作是一张纸,我们要找一条折线,按照这条折线折叠后,离折线最近的点的间距比其他折线都要大。形式化表示为:上面描述的这种情况是建立在样例线性可分的假设上,当样例线性不可分时,可以引入松弛变量,它允许在一定程度上违反间隔约束。

3、我们可以尝试使用核函数来将特征映射到高维,这样很可能就可分了。然而,映射后我们也不能100%保证可分。那怎么办呢,我们需要将模型进行调整,以保证在不可分的情况下,也能够尽可能地找出分隔超平面。看下面两张图:可以看到一个离群点(可能是噪声)可以造成超平面的移动,间隔缩小,可见以前的模型对噪声非常敏感。再有甚者,如果离群点在另外一个类中,那么这时候就是线性不可分了。这时候我们应该允许一些点游离并在在模型中违背限制条件(函数间隔大于1)。我们设计得到新的模型如下(也称软间隔):引入非负参数后(称为松弛变量),就允许某些样

4、本点的函数间隔小于1,即在最大间隔区间里面,或者函数间隔是负数,即样本点在对方的区域中。而放松限制条件后,我们需要重新调整目标函数,以对离群点进行处罚,目标函数后面加上的就表示离群点越多,目标函数值越大,而我们要求的是尽可能小的目标函数值。这里的C是离群点的权重,C越大表明离群点对目标函数影响越大,也就是越不希望看到离群点。我们看到,目标函数控制了离群点的数目和程度,使大部分样本点仍然遵守限制条件。图1.1分类情况1.1线性支持向量机SVM只要是针对两类分类问题,分类主要包括线性可分和非线性可分两类。在样例线性可分

5、的情况下,此时,存在一个超平面,使得训练样本可以完全被分开,这和超平面的形式为:从KKT条件得知只有函数间隔是1(离超平面最近的点)的线性约束式前面的系数,也就是说这些约束式,对于其他的不在线上的点(),极值不会在他们所在的范围内取得,因此前面的系数.注意每一个约束式实际就是一个训练样本。图1.2最优分类面实线是最大间隔超平面,假设×号的是正例,圆圈的是负例。在虚线上的点就是函数间隔是1的点,那么他们前面的系数,其他点都是。这三个点称作支持向量。构造拉格朗日函数如下:下面我们按照对偶问题的求解步骤来进行求解,首先求

6、解的最小值,对于固定的,的最小值只与w和b有关。最后得到此时的拉格朗日函数只包含了变量。然而我们求出了才能得到w和b。接着是极大化的过程前面提到过对偶问题和原问题满足的几个条件,首先由于目标函数和线性约束都是凸函数,而且这里不存在等式约束h。存在w使得对于所有的i,。因此,一定存在使得是原问题的解,是对偶问题的解。1.1非线性支持向量机图1.3通过非线性变换将输入空间变换到一个高维空间对非线性问题,可以通过非线性变换转化为某个高维空间中的线性问题,在变换空间求最优分类面。对于线性不可分的情况,可以把样本X映射到一个

7、高维特征空间H,并在此空间中运用原空间的函数来实现内积运算,这样将非线性问题转换成另一空间的线性问题来获得一个样本的归属。根据泛化函数的有关理论,只要一种核函数满足Mercer条件,它就对应某一空间中的内积,因此只要在最优分类面上采用适当的内积函数就可以实现这种线性不可分的分类问题。模型修改后,拉格朗日公式也要修改如下:这里的和都是拉格朗日乘子,回想我们在拉格朗日对偶中提到的求法,先写出拉格朗日公式(如上),然后将其看作是变量w和b的函数,分别对其求偏导,得到w和b的表达式。然后代入公式中,求带入后公式的极大值。整

8、个推导过程类似以前的模型,这里只写出最后结果如下:此时,我们发现没有了参数,与之前模型唯一不同在于又多了的限制条件。1.1核函数核函数是将函数映射到高维空间来增加线性学习的计算能力,通过选择恰当的核函数来代替内积,可以隐式地将训练数据非线性地映射到高维空间,而不增加可调参数的个数,前提是核函数能够计算对应着的输入特征向量的内积。将核函数形式化定义,如果原始特

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。