欢迎来到天天文库
浏览记录
ID:48531135
大小:257.50 KB
页数:3页
时间:2020-02-25
《高中数学总复习之要点必备:函数.doc》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、§2.函数知识要点I.基础知识要点1.函数的三要素:定义域,值域,对应法则.2.函数的单调区间可以是整个定义域,也可以是定义域的一部分.对于具体的函数来说可能有单调区间,也可能没有单调区间,如果函数在区间(0,1)上为减函数,在区间(1,2)上为减函数,就不能说函数在上为减函数.3.反函数定义:只有满足,函数才有反函数.例:无反函数.函数的反函数记为,习惯上记为.在同一坐标系,函数与它的反函数的图象关于对称.[注]:一般地,的反函数.是先的反函数,在左移三个单位.是先左移三个单位,在的反函数.4.⑴单调函数必有反函数,但并非反函数存在时一定是单调的.因此,所有偶函数
2、不存在反函数.⑵如果一个函数有反函数且为奇函数,那么它的反函数也为奇函数.⑶设函数y=f(x)定义域,值域分别为X、Y.如果y=f(x)在X上是增(减)函数,那么反函数在Y上一定是增(减)函数,即互为反函数的两个函数增减性相同.⑷一般地,如果函数有反函数,且,那么.这就是说点()在函数图象上,那么点()在函数的图象上.5.指数函数:(),定义域R,值域为().⑴①当,指数函数:在定义域上为增函数;②当,指数函数:在定义域上为减函数.⑵当时,的值越大,越靠近轴;当时,则相反.6.对数函数:如果()的次幂等于,就是,数就叫做以为底的的对数,记作(,负数和零没有对数);其
3、中叫底数,叫真数.⑴对数运算:保护原创权益净化网络环境(以上)注⑴:当时,.⑵:当时,取“+”,当是偶数时且时,,而,故取“—”.例如:中x>0而中x∈R).⑵()与互为反函数.当时,的值越大,越靠近轴;当时,则相反.7.奇函数,偶函数:⑴偶函数:设()为偶函数上一点,则()也是图象上一点.偶函数的判定:两个条件同时满足①定义域一定要关于轴对称,例如:在上不是偶函数.②满足,或,若时,.⑵奇函数:设()为奇函数上一点,则()也是图象上一点.奇函数的判定:两个条件同时满足①定义域一定要关于原点对称,例如:在上不是奇函数.②满足,或,若时,.8.对称变换:①y=f(x)
4、②y=f(x)③y=f(x)9.判断函数单调性(定义)作差法:对带根号的一定要分子有理化,例如:在进行讨论.10.外层函数的定义域是内层函数的值域.例如:已知函数f(x)=1+的定义域为A,函数f[f(x)]的定义域是B,则集合A与集合B之间的关系是.解:的值域是的定义域,的值域,故,而A,故.11.常用变换:①.证:保护原创权益净化网络环境②证:12.⑴熟悉常用函数图象:例:→关于轴对称.→→→关于轴对称.⑵熟悉分式图象:例:定义域,值域→值域前的系数之比.保护原创权益净化网络环境
此文档下载收益归作者所有