欢迎来到天天文库
浏览记录
ID:48516716
大小:316.77 KB
页数:9页
时间:2020-02-06
《高一函数单调性奇偶性经典练习.doc》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库。
1、.函数单调性奇偶性经典练习一、单调性题型高考中函数单调性在高中函数知识模块里面主要作为工具或条件使用,也有很多题会以判断单调性单独出题或有的题会要求先判断函数单调性才能进行下一步骤解答,另有部分以函数单调性质的运用为主.(一)函数单调性的判断函数单调性判断常用方法:例1证明函数在区间上为减函数(定义法)解析:用定义法证明函数的单调性,按步骤“一假设、二作差、三判断(与零比较)”进行.解:设且,,,故函数在区间上为减函数.练习1证明函数在区间上为减函数(定义法)练习2证明函数在区间上为增函数(定义法、快速判断法)练习3求函数定义域,并求函数的单调增区
2、间(定义法)练习4求函数定义域,并求函数的单调减区间(定义法)..(复合函数,基本初等函数相加减问题,反函数问题在本章结束时再练习)(二)函数单调性的应用例1若函数是定义在上的增函数,且恒成立,求实数的范围。练习1若函数是定义在上的增函数,且恒成立,求实数的范围练习2若函数是定义在上的增函数,且恒成立,求实数的范围例2若函数是定义在上的减函数,且恒成立,求实数的取值范围.练习1若函数是定义在上的减函数,且恒成立,求实数的取值范围.例3求函数在区间上的最大值.练习1求函数在区间上的最大值..二、奇偶性题型例1判断下列函数的奇偶性1)2)3)4)解:1
3、)的定义域为R,所以原函数为偶函数。2)的定义域为即,关于原点对称,又即,所以原函数既是奇函数又是偶函数。3)的定义域为即,定义域不关于原点对称,所以原函数既不是奇函数又不是偶函数。4)分段函数的定义域为关于原点对称,当时,,当时,,综上所述,在上总有所以原函数为奇函数。..注意:在判断分段函数的奇偶性时,要对x在各个区间上分别讨论,应注意由x的取值范围确定应用相应的函数表达式。练习判断下列函数的奇偶性1)2)3)4)5)例2设是R上是奇函数,且当时,求在R上的解析式解:当时有,设,则,从而有,是R上是奇函数,所以,因此所求函数的解析式为注意:在求
4、函数的解析式时,当球自变量在不同的区间上是不同表达式时,要用分段函数是形式表示出来。练习1已知为奇函数,当时,,求的表达式。例3已知函数且,求的值解:令,则..为奇函数,练习1已知函数且,求的值例4设函数是定义域R上的偶函数,且图像关于对称,已知时,求时的表达式。解:图像关于对称,,=所以时的表达式为=练习1设函数是定义域R上的偶函数,且恒成立,已知时,求时的表达式例5定义在R上的偶函数在区间上单调递增,且有求的取值范围。解:,,且为偶函数,且在上单调递增,在上为减函数,所以的取值范围是练习1定义在上的奇函数为减函数,且,求实数a的取值范围..练习
5、2定义在上的偶函数,当时,为减函数,若成立,求m的取值范围.综合练习1.判断函数的奇偶性2.求下列函数的单调区间(1);(2);(3)3函数在上是单调递减函数,则的单调递增区间是4.若函数在区间上是奇函数,则a=()A.-3或1B。3或-1C1D-3已知函数,则它是()A奇函数B偶函数C即是奇函数又是偶函数D既不是奇函数又不是偶函数5.判断下列函数的奇偶性(1)(2)6.已知定义在R上的奇函数,满足,且在区间[0,2]上是增函数,则().A.B.C.D.7.已知定义在R上的奇函数满足,则的值为()A.-1B.0C.1D.2..8.已知函数f(x)=
6、,x∈[1,+∞(1)当a=时利用函数单调性的定义判断其单调性,并求其值域.(2)若对任意x∈[1,+∞,f(x)>0 恒成立,求实数a的取值范围.....富不贵只能是土豪,你可以一夜暴富,但是贵气却需要三代以上的培养。孔子说“富而不骄,莫若富而好礼。”如今我们不缺土豪,但是我们缺少贵族。 高贵是大庇天下寒士俱欢颜的豪气与悲悯之怀,高贵是位卑未敢忘忧国的壮志与担当之志高贵是先天下之忧而忧的责任之心。 精神的财富和高贵的内心最能养成性格的高贵,以贵为美,在不知不觉中营造出和气的氛围;以贵为高,在潜移默化中提升我们的素质。以贵为尊,在创造了大量物质
7、财富的同时,精神也提升一个境界。 一个心灵高贵的人举手投足间都会透露出优雅的品质,一个道德高贵的社会大街小巷都会留露出和谐的温馨,一个气节高贵的民族一定是让人尊崇膜拜的民族。别让富而不贵成为永久的痛。 分享一段网上流传着改变内心的风水的方法,让我们的内心高贵起来: 喜欢付出,福报就越来越多;喜欢感恩,顺利就越来越多;喜欢助人,贵人就越来越多;喜欢知足,快乐就越来越多;喜欢逃避,失败就越来越多;喜欢分享,朋友就越来越多。 喜欢生气,疾病就越来越多;喜欢施财,富贵就越来越多;喜欢享福,痛苦就越来越多;喜欢学习,智慧就越来越多。.
此文档下载收益归作者所有