高一函数单调性奇偶性经典练习

高一函数单调性奇偶性经典练习

ID:22605449

大小:304.90 KB

页数:7页

时间:2018-10-30

高一函数单调性奇偶性经典练习_第1页
高一函数单调性奇偶性经典练习_第2页
高一函数单调性奇偶性经典练习_第3页
高一函数单调性奇偶性经典练习_第4页
高一函数单调性奇偶性经典练习_第5页
资源描述:

《高一函数单调性奇偶性经典练习》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

1、杰中杰教育函数单调性奇偶性函数单调性奇偶性经典练习一、单调性题型高考中函数单调性在高中函数知识模块里面主要作为工具或条件使用,也有很多题会以判断单调性单独出题或有的题会要求先判断函数单调性才能进行下一步骤解答,另有部分以函数单调性质的运用为主.(一)函数单调性的判断函数单调性判断常用方法:例1证明函数在区间上为减函数(定义法)解析:用定义法证明函数的单调性,按步骤“一假设、二作差、三判断(与零比较)”进行.解:设且,,,故函数在区间上为减函数.练习1证明函数在区间上为减函数(定义法)练习2证明函数在区间上为增函数(定义法、快速判断法)练习3求函数定义域,并求函数的单调增区间(定义法)练习4求函

2、数定义域,并求函数的单调减区间(定义法)杰中杰专业数学数学教育培训王牌杰中杰教育函数单调性奇偶性(复合函数,基本初等函数相加减问题,反函数问题在本章结束时再练习)(二)函数单调性的应用例1若函数是定义在上的增函数,且恒成立,求实数的范围。练习1若函数是定义在上的增函数,且恒成立,求实数的范围练习2若函数是定义在上的增函数,且恒成立,求实数的范围例2若函数是定义在上的减函数,且恒成立,求实数的取值范围.练习1若函数是定义在上的减函数,且恒成立,求实数的取值范围.例3求函数在区间上的最大值.练习1求函数在区间上的最大值杰中杰专业数学数学教育培训王牌杰中杰教育函数单调性奇偶性二、奇偶性题型例1判断下

3、列函数的奇偶性1)2)3)4)解:1)的定义域为R,所以原函数为偶函数。2)的定义域为即,关于原点对称,又即,所以原函数既是奇函数又是偶函数。3)的定义域为即,定义域不关于原点对称,所以原函数既不是奇函数又不是偶函数。4)分段函数的定义域为关于原点对称,当时,,当时,,综上所述,在上总有所以原函数为奇函数。杰中杰专业数学数学教育培训王牌杰中杰教育函数单调性奇偶性注意:在判断分段函数的奇偶性时,要对x在各个区间上分别讨论,应注意由x的取值范围确定应用相应的函数表达式。练习判断下列函数的奇偶性1)2)3)4)5)例2设是R上是奇函数,且当时,求在R上的解析式解:当时有,设,则,从而有,是R上是奇函

4、数,所以,因此所求函数的解析式为注意:在求函数的解析式时,当球自变量在不同的区间上是不同表达式时,要用分段函数是形式表示出来。练习1已知为奇函数,当时,,求的表达式。例3已知函数且,求的值解:令,则杰中杰专业数学数学教育培训王牌杰中杰教育函数单调性奇偶性为奇函数,练习1已知函数且,求的值例4设函数是定义域R上的偶函数,且图像关于对称,已知时,求时的表达式。解:图像关于对称,,=所以时的表达式为=练习1设函数是定义域R上的偶函数,且恒成立,已知时,求时的表达式例5定义在R上的偶函数在区间上单调递增,且有求的取值范围。解:,,且为偶函数,且在上单调递增,在上为减函数,所以的取值范围是练习1定义在上

5、的奇函数为减函数,且,求实数a的取值范围杰中杰专业数学数学教育培训王牌杰中杰教育函数单调性奇偶性练习2定义在上的偶函数,当时,为减函数,若成立,求m的取值范围.综合练习1.判断函数的奇偶性2.求下列函数的单调区间(1);(2);(3)3函数在上是单调递减函数,则的单调递增区间是4.若函数在区间上是奇函数,则a=()A.-3或1B。3或-1C1D-3已知函数,则它是()A奇函数B偶函数C即是奇函数又是偶函数D既不是奇函数又不是偶函数5.判断下列函数的奇偶性(1)(2)6.已知定义在R上的奇函数,满足,且在区间[0,2]上是增函数,则().A.B.C.D.7.已知定义在R上的奇函数满足,则的值为(

6、)A.-1B.0C.1D.2杰中杰专业数学数学教育培训王牌杰中杰教育函数单调性奇偶性8.已知函数f(x)=,x∈[1,+∞(1)当a=时利用函数单调性的定义判断其单调性,并求其值域.(2)若对任意x∈[1,+∞,f(x)>0 恒成立,求实数a的取值范围.杰中杰专业数学数学教育培训王牌

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。