欢迎来到天天文库
浏览记录
ID:48426527
大小:149.56 KB
页数:9页
时间:2019-11-17
《2020版高中数学第一章常用逻辑用语1.2.2“非”否定学案含解析新人教B版选修2-1.docx》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、1.2.2 “非”(否定)学习目标 1.理解逻辑联结词“非”的含义,能写出简单命题的“綈p”命题.2.了解逻辑联结词“且”“或”“非”的初步应用.3.会对全称命题与存在性命题进行否定.知识点一 逻辑联结词“非”1.命题的否定:对命题p加以否定,就得到一个新命题,记作綈p,读作“非p”或“p的否定”.2.命题綈p的真假:若p是真命题,则綈p必是假命题;若p是假命题,则綈p必是真命题.知识点二 全称命题的否定写全称命题的否定的方法:(1)更换量词,将全称量词换为存在量词;(2)将结论否定.对于含一个量词的全称命题的否定,有下面的结论:全称命题p:∀x∈M,p(x),它的否
2、定綈p:∃x∈M,綈p(x).全称命题的否定是存在性命题.知识点三 存在性命题的否定写存在性命题的否定的方法:(1)将存在量词改写为全称量词;(2)将结论否定.对于含一个量词的存在性命题的否定,有下面的结论:存在性命题p:∃x∈M,p(x),它的否定綈p:∀x∈M,綈p(x).存在性命题的否定是全称命题.1.写存在性命题的否定时,存在量词变为全称量词.( √ )2.∃x∈M,p(x)与∀x∈M,綈p(x)的真假性相反.( √ )3.命题“若a2>b2,则
3、a
4、>
5、b
6、”的否定为“若a2>b2,则
7、a
8、<
9、b
10、”.( × )题型一 “綈p”命题的构成与真假判断例1 写出
11、下列命题的否定形式,并判断其否定的真假.(1)面积相等的三角形都是全等三角形;(2)若m2+n2=0,则实数m,n全为零;(3)若xy=0,则x=0或y=0.解 (1)面积相等的三角形不都是全等三角形,为真命题.(2)若m2+n2=0,则实数m,n不全为零,为假命题.(3)若xy=0,则x≠0且y≠0,为假命题.反思感悟 綈p是对命题p的全盘否定,对一些词语的正确否定是写綈p的关键,如“都”的否定是“不都”,“至多两个”的反面是“至少三个”,“p∧q”的否定是“(綈p)∨(綈q)”等.跟踪训练1 写出下列命题的否定形式.(1)p:y=sinx是周期函数;(2)p:3<
12、2;(3)p:空集是集合A的子集;(4)p:5不是75的约数.解 (1)綈p:y=sinx不是周期函数.(2)綈p:3≥2.(3)綈p:空集不是集合A的子集.(4)綈p:5是75的约数.题型二 全称命题和存在性命题的否定命题角度1 全称命题的否定例2 写出下列全称命题的否定:(1)任何一个平行四边形的对边都平行;(2)数列:1,2,3,4,5中的每一项都是偶数;(3)∀a,b∈R,方程ax=b都有唯一解;(4)可以被5整除的整数,末位是0.解 (1)其否定:存在一个平行四边形,它的对边不都平行.(2)其否定:数列:1,2,3,4,5中至少有一项不是偶数.(3)其否定:
13、∃a,b∈R,使方程ax=b的解不唯一或不存在.(4)其否定:存在被5整除的整数,末位不是0.反思感悟 全称命题的否定是存在性命题,对省略全称量词的全称命题可补上量词后再进行否定.跟踪训练2 写出下列全称命题的否定:(1)p:每一个四边形的四个顶点共圆;(2)p:所有自然数的平方都是正数;(3)p:任何实数x都是方程5x-12=0的根;(4)p:对任意实数x,x2+1≥0.解 (1)綈p:存在一个四边形,它的四个顶点不共圆.(2)綈p:有些自然数的平方不是正数.(3)綈p:存在实数x不是方程5x-12=0的根.(4)綈p:存在实数x,使得x2+1<0.命题角度2 存在
14、性命题的否定例3 写出下列存在性命题的否定,并判断其否定的真假.(1)p:∃x>1,使x2-2x-3=0;(2)p:有些素数是奇数;(3)p:有些平行四边形不是矩形.解 (1)綈p:∀x>1,x2-2x-3≠0(假).(2)綈p:所有的素数都不是奇数(假).(3)綈p:所有的平行四边形都是矩形(假).反思感悟 存在性命题的否定是全称命题,写命题的否定时要分别改变其中的量词和判断词.即p:∃x∈M,p(x)成立⇒綈p:∀x∈M,綈p(x)成立.跟踪训练3 写出下列存在性命题的否定,并判断其否定的真假.(1)有些实数的绝对值是正数;(2)某些平行四边形是菱形;(3)∃x,
15、y∈Z,使得x+y=3.解 (1)命题的否定是“不存在一个实数,它的绝对值是正数”,即“所有实数的绝对值都不是正数”.因此命题的否定是假命题.(2)命题的否定是“没有一个平行四边形是菱形”,即“每一个平行四边形都不是菱形”.由于菱形是平行四边形,因此命题的否定是假命题.(3)命题的否定是“∀x,y∈Z,x+y≠3”.当x=0,y=3时,x+y=3,因此命题的否定是假命题.题型三 存在性命题、全称命题的综合应用例4 已知函数f(x)=x2-2x+5.(1)是否存在实数m,使不等式m+f(x)>0对于任意x∈R恒成立,并说明理由;(2)若存在一个实数x,
此文档下载收益归作者所有