欢迎来到天天文库
浏览记录
ID:48410321
大小:614.50 KB
页数:15页
时间:2020-01-19
《数学人教版九年级上册一元二次方程实际问题(封面设计).ppt》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、21.3实际问题与一元二次方程第3课时用一元二次方程解决几何图形问题潮安区实验学校陈少丽要设计一本书的封面,封面长27㎝,宽21㎝,正中央是一个与整个封面长宽比例相同的矩形,如果要使四周的边衬所占面积是封面面积的四分之一,上、下边衬等宽,左、右边衬等宽,应如何设计四周边衬的宽度?分析:这本书的长宽之比是27:21=9:7,正中央的矩形两边之比也为9:7,设中央的矩形的长和宽分别是9acm和7acm,由此得上、下边衬与左、右边衬的宽度之比也应为9:7,中央矩形的面积即可用含未知数的代数式表示,进而列出方程,求出答案.解:设上、下边衬的宽均为9xcm,
2、左、右边衬的宽均为7xcm.则中央矩形的长为(27-18x)cm,宽为(21-14x)cm由题意,可列出方程为:(27-18x)(21-14x)=整理,得16x2-48x+9=0解方程,得上、下边衬的宽均为_____cm,左、右边衬的宽均为_____cm.如果换一种设未知数的方法,是否可以更简单的解决上面的问题?方程的哪一个根更符合实际意义?为什么?如图,是长方形鸡场平面示意图,一边靠墙,另外三面用竹篱笆围成,若竹篱笆总长为35m,所围的面积为150m2,则此长方形鸡场的长、宽分别为_______.10m或7.5m如图,有长为24米的篱笆,一面利用
3、墙(墙的最大可用长度a为10米),围成中间隔有一道篱笆的长方形花圃。设花圃的宽AB为x米,面积为S米2,(1)求S与x的函数关系式;(2)如果要围成面积为45米2的花圃,AB的长是多少米?【解析】(1)设宽AB为x米,则BC为(24-3x)米,这时面积S=x(24-3x)=-3x2+24x(2)由条件-3x2+24x=45化为:x2-8x+15=0解得x1=5,x2=3∵0<24-3x≤10得14/3≤x<8∴x2不合题意,AB=5,即花圃的宽AB为5米1.如图是宽为20米,长为32米的矩形耕地,要修筑同样宽的三条道路(两条纵向,一条横向,且互相垂
4、直),把耕地分成六块大小相等的试验地,要使试验地的面积为570平方米,问:道路宽为多少米?解:设道路宽为x米,则化简得,其中的x=35超出了原矩形的宽,应舍去.答:道路的宽为1米.1.如图,长方形ABCD,AB=15m,BC=20m,四周外围环绕着宽度相等的小路,已知小路的面积为246m2,求小路的宽度.ABCD跟踪训练化简得,答:小路的宽为3米.解:设小路宽为x米,则2.用一根长40cm的铁丝围成一个长方形,要求长方形的面积为75cm2.(1)求此长方形的宽是多少?(2)能围成一个面积为101cm2的长方形吗?如能,说明围法.(3)若设围成一个长
5、方形的面积为S(cm2),长方形的宽为x(cm),求S与x的函数关系式,并求出当x为何值时,S的值最大?最大面积为多少?解:(1)设此长方形的宽为xcm,则长为(20-x)cm.根据题意,得x(20-x)=75.解得:x1=5,x2=15(舍去).答:此长方形的宽是5cm.(2)不能.由x(20-x)=101,即x2-20x+101=0,知Δ=202-4×101=-4<0,方程无解,故不能围成一个面积为101cm2的长方形.(3)S=x(20-x)=-x2+20x.由S=-x2+20x=-(x-10)2+100知当x=10时,S的值最大,最大面积为
6、100cm2.怎样解决(2)中的能与不能的问题;用配方法解决第(3)问.
此文档下载收益归作者所有