数学北师大版九年级下册第二章《二次函数回顾与思考》(1)教学设计.ppt

数学北师大版九年级下册第二章《二次函数回顾与思考》(1)教学设计.ppt

ID:48399993

大小:426.50 KB

页数:20页

时间:2020-01-19

数学北师大版九年级下册第二章《二次函数回顾与思考》(1)教学设计.ppt_第1页
数学北师大版九年级下册第二章《二次函数回顾与思考》(1)教学设计.ppt_第2页
数学北师大版九年级下册第二章《二次函数回顾与思考》(1)教学设计.ppt_第3页
数学北师大版九年级下册第二章《二次函数回顾与思考》(1)教学设计.ppt_第4页
数学北师大版九年级下册第二章《二次函数回顾与思考》(1)教学设计.ppt_第5页
资源描述:

《数学北师大版九年级下册第二章《二次函数回顾与思考》(1)教学设计.ppt》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、xy第二章二次函数回顾与思考(一)回顾与思考1.你在哪些情况下见到过抛物线的“身影”?用语言或图象来进行描述.2.你能用二次函数的知识解决哪些实际问题?与同伴交流.3.小结作二次函数图象的方法.4.二次函数的图象有哪些性质?如何确定它的开口方向、对称轴和顶点坐标?请用具体例子进行说明.5.用具体例子说明如何更恰当或更有效地利用二次函数的表达式、表格和图象刻画变量之间的关系.6.用自己的语言描述二次函数y=ax2+bx+c的图象与方程ax2+bx+c=0的根之间的关系.本课知识小结二次函数定义图象相关

2、概念抛物线对称轴顶点性质和图象开口方向、对称轴、顶点坐标增减性解析式的确定三点式顶点式交点式二次函数的定义思索归纳定义:一般地,形如y=ax²+bx+c(a,b,c是常数,a≠0)的函数叫做x的二次函数.提示:(1)关于x的代数式一定是整式,a,b,c为常数,且a≠0.(2)等式的右边最高次数为2,可以没有一次项和常数项,但不能没有二次项.1.下列函数中,哪些是二次函数?怎么判断??(1)y=3(x-1)²+1;(3)s=3-2t².(5)y=(x+3)²-x².随堂练习(是)(是)(不是)(不是)

3、(不是)(一)形如y=ax2(a≠0)的二次函数二次函数开口方向对称轴顶点坐标y=ax2a>0a<0向上向下x=0(0,0)向上向下X=0(0,k)二次函数的图象和性质(二)形如y=ax2+k (a≠0)的二次函数二次函数开口方向对称轴顶点坐标y=ax2+ka>0a<0二次函数开口方向对称轴顶点坐标y=a(x-h)2a>0a<0向上向下x=h(h,0)(三)形如y=a(x-h)2(a≠0)的二次函数(四)形如y=a(x-h)2+k(a≠0)的二次函数二次函数开口方向对称轴顶点坐标y=a(x-h)2+

4、ka>0a<0(h,k)向上向下x=h1、平移关系2、顶点变化当h>0时,向右平移当h<0时,向左平移y=ax2y=a(x-h)2(h,0)(0,0)当k>0时,向上平移当k<0时,向下平移y=a(x-h)2+k(h,k)二次函数y=a(x-h)²+k与y=ax²的关系-1-2-3-401234••••••••123456-1-2观察y=x2与y=x2-6x+7的函数图象,说说y=x2-6x+7的图象是怎样由y=x2的图象平移得到的?y=x2-6x+7=x2-6x+9-2=(x-3)2-2巩固练习1

5、:(1)抛物线y=x2的开口向,对称轴是,顶点坐标是,图象过第象限;(2)已知y=-nx2(n>0),则图象()(填“可能”或“不可能”)过点A(-2,3)。上y轴(0,0)一、二不可能(3)抛物线y=x2+3的开口向,对称轴是,顶点坐标是,是由抛物线y=x2向平移个单位得到的;上x=0(0,3)上3(4)已知(如图)抛物线y=ax2+k的图象,则a0,k0;若图象过A(0,-2)和B(2,0),则a=,k=;函数关系式是y=。><0.5-20.5x2-2XYABO(5)抛物线y=2(x-1/2)2

6、+1的开口向,对称轴,顶点坐标是(6)若抛物线y=a(x+m)2+n开口向下,顶点在第四象限,则a0,m0,n0。上x=1/2(1/2,1)<<<a>0a<0开口方向向上向下顶点对称轴增减性最值当时当时当时y随x的增大而减少y随x的增大而增大当时y随x的增大而减少当时y随x的增大而增大当时二次函数y=ax2+bx+c(a≠0)的图象和性质1.若无论x取何实数,二次函数y=ax2+bx+c的值总为负,那么a、c应满足的条件是()A.a>0且b2-4ac≥0B.a>0且b2-4ac>0C.a<0且b2-

7、4ac<0D.a<0且b2-4ac≤02.已知二次函数y=ax2+bx+c的图象如图所示,请根据图象判断下列各式的符号:a0,b0,c0,∆0,a-b+c0,a+b+c0<<>>>=C3.函数y=ax+b和y=ax2+bx+c在同一直角坐标系内的图象大致是()4.已知二次函数y=ax2+bx+c中a>0,b<0,c<0,请画一个能反映这样特征的二次函数草图.C2、已知抛物线顶点坐标(h,k),通常设抛物线解析式为_______________3、已知抛物线与x轴的两个交点(x1,0)、(x2,0),

8、通常设解析式为_____________1、已知抛物线上的三点,通常设解析式为________________y=ax2+bx+c(a≠0)y=a(x-h)2+k(a≠0)y=a(x-x1)(x-x2)(a≠0)二次函数解析式的三种表示方式1、二次函数y=ax2+bx+c的最大值是2,图象顶点在直线y=x+1上,并且图象经过点(3,-6),求a、b、c。解:∵二次函数的最大值是2∴抛物线的顶点纵坐标为2又∵抛物线的顶点在直线y=x+1上∴当y=2时,x=1∴顶点坐标为

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。