2020高考数学培优《离心率》(解析版)

2020高考数学培优《离心率》(解析版)

ID:48344406

大小:656.91 KB

页数:12页

时间:2019-10-17

2020高考数学培优《离心率》(解析版)_第1页
2020高考数学培优《离心率》(解析版)_第2页
2020高考数学培优《离心率》(解析版)_第3页
2020高考数学培优《离心率》(解析版)_第4页
2020高考数学培优《离心率》(解析版)_第5页
资源描述:

《2020高考数学培优《离心率》(解析版)》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、离心率1.离心率的值例1:设,分别是椭圆的左、右焦点,点在椭圆上,线段的中点在轴上,若,则椭圆的离心率为()A.B.C.D.【答案】A【解析】本题存在焦点三角形,由线段的中点在轴上,为中点可得轴,从而,又因为,则直角三角形中,,且,,所以,故选A.2.离心率的取值范围例2:已知是双曲线的左焦点,是该双曲线的右顶点,过点且垂直于轴的直线与双曲线交于,两点,若是锐角三角形,则该双曲线的离心率的取值范围为()A.B.C.D.【答案】B【解析】从图中可观察到若为锐角三角形,只需要为锐角.由对称性可得只需即可.且,均可用,,表示,12是通径的一半,得:,,所以,即,故选B.对点增分集训一、单选题1.

2、若双曲线的一条渐近线经过点,则该双曲线的离心率为()A.B.C.D.【答案】D【解析】双曲线的渐近线过点,代入,可得:,即,,故选D.2.倾斜角为的直线经过椭圆右焦点,与椭圆交于、两点,且,则该椭圆的离心率为()A.B.C.D.【答案】A【解析】设直线的参数方程为,代入椭圆方程并化简得,所以,,由于,即,代入上述韦达定理,12化简得,即,.故选A.3.《九章算术》是我国古代内容极为丰富的数学名著,第九章“勾股”,讲述了“勾股定理”及一些应用,还提出了一元二次方程的解法问题.直角三角形的三条边长分别称“勾”“股”“弦”.设、分别是双曲线,的左、右焦点,是该双曲线右支上的一点,若,分别是的“勾

3、”“股”,且,则双曲线的离心率为()A.B.C.2D.【答案】D【解析】由双曲线的定义得,所以,即,由题意得,所以,又,所以,解得,从而离心率,故选D.4.已知双曲线的一个焦点与抛物线的焦点相同,它们交于,两点,且直线过点,则双曲线的离心率为()A.B.C.D.2【答案】C【解析】设双曲线的左焦点坐标为,由题意可得:,,则,,即,,又:,,据此有:,即,12则双曲线的离心率:.本题选择C选项.5.已知点在椭圆上,若点为椭圆的右顶点,且(为坐标原点),则椭圆的离心率的取值范围是()A.B.C.D.【答案】C【解析】由题意,所以点在以为直径的圆上,圆心为,半径为,所以圆的方程为:,与椭圆方程联

4、立得:,此方程在区间上有解,由于为此方程的一个根,且另一根在此区间内,所以对称轴要介于与之间,所以,结合,解得,根据离心率公式可得.故选C.6.已知椭圆,点,是长轴的两个端点,若椭圆上存在点,使得,则该椭圆的离心率的最小值为()A.B.C.D.【答案】C【解析】设为椭圆短轴一端点,则由题意得,即,因为,所以,,,,,,故选C.127.已知双曲线的左,右焦点分别为,,点在双曲线的右支上,且,则此双曲线的离心率的最大值为()A.B.C.2D.【答案】B【解析】由双曲线的定义知①;又,②联立①②解得,,在中,由余弦定理,得,要求的最大值,即求的最小值,当时,解得,即的最大值为,故选B.解法二:由

5、双曲线的定义知①,又,②,联立①②解得,,因为点在右支所以,即故,即的最大值为,故选B.8.已知椭圆的左、右焦点分别为,,点在椭圆上,为坐标原点,若,且,则该椭圆的离心率为()A.B.C.D.【答案】D【解析】由椭圆的定义可得,,又,可得,即为椭圆的短轴的端点,,且,即有,即为,.故选12D.9.若直线与双曲线有公共点,则双曲线的离心率的取值范围为()A.B.C.D.【答案】D【解析】双曲线的渐近线方程为,由双曲线与直线有交点,则有,即有,则双曲线的离心率的取值范围为,故选D.10.我们把焦点相同且离心率互为倒数的椭圆和双曲线称为一对“相关曲线”.已知,是一对相关曲线的焦点,,分别是椭圆和

6、双曲线的离心率,若为它们在第一象限的交点,,则双曲线的离心率()A.B.2C.D.3【答案】C【解析】设,,椭圆的长半轴长为,双曲线的实半轴长为,可得,,可得,,由余弦定理可得,即有,由离心率公式可得,,即有,解得,故选C.11.又到了大家最喜(tao)爱(yan)的圆锥曲线了.已知直线与椭圆交于、两点,与圆交于、两点.若存在,使得,则椭圆的离心率的取值范围是()12A.B.C.D.【答案】C【解析】直线,即,直线恒过定点,直线过圆的圆心,,,的圆心为、两点中点,设,,,上下相减可得:,化简可得,,,,故选C.12.已知点为双曲线右支上一点,点,分别为双曲线的左右焦点,点是的内心(三角形内

7、切圆的圆心),若恒有成立,则双曲线的离心率取值范围是()A.B.C.D.【答案】D【解析】设的内切圆半径为,由双曲线的定义得,,12,,,由题意得,故,故,又,所以,双曲线的离心率取值范围是,故选D.二、填空题13.已知抛物线与双曲线有相同的焦点,点是两曲线的一个交点,若直线的斜率为,则双曲线的离心率为______.【答案】【解析】如图所示,设双曲线的另外一个焦点为,由于的斜率为,所以,且,所以是等边三角形,所以,所以,

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。