资源描述:
《【湘教版】2019年春七年级数学下册优秀教案(含板书与反思):5.1.2 轴对称变换》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、5、1.2 轴对称变换 1、理解轴对称变换的概念;2、掌握轴对称变换的性质;(难点)3、能够按要求作出一个图形经过轴对称变换后的图形、(重点)一、情境导入观察下图,水面上的图形与映在水里的像有什么关系?二、合作探究探究点一:轴对称变换观察下图中各组图形,其中左边图形不是右边图形轴对称变换得到的是( )解析:直线两旁的部分能够互相重合的两个图形叫做这两个图形成轴对称、由图形可以看出:C选项中的伞面不对称,故选C.方法总结:轴对称是指两个图形的一种对称关系,而且只有一条对称轴、判断两个图形是不是成轴对称,关键是寻找对称轴,看直线两边的图形折叠后能
2、否重合、探究点二:轴对称变换的性质【类型一】利用轴对称变换的性质求图形的周长三角形ABC与三角形DEF是关于直线l成轴对称,且三角形ABC的周长是16cm,则三角形DEF的周长是( )A、16cmB、18cmC、20cmD、22cm解析:轴对称不改变图形的形状和大小,所以三角形DEF的周长与三角形ABC的周长相等,也是16cm.故选A.方法总结:图形经过轴对称变换,长度、角度和面积等都不改变、【类型二】利用轴对称变换的性质求角度如图,把一张长方形的纸沿OG折叠后,B、D两点落在B′、D′点处,若得∠AOB′=80°,则∠B′OG的度数为___
3、_____、解析:根据轴对称的性质可得∠B′OG=∠BOG,再根据∠AOB′=80°,可得出∠B′OG的度数、解:根据轴对称的性质得:∠B′OG=∠BOG.由∠AOB′=80°,得∠B′OG+∠BOG=100°,∴∠B′OG=×100°=50°.故答案为50°.方法总结:本题考查轴对称变换的性质,在解答此类问题时要注意数形结合的应用、【类型三】利用轴对称变换的性质求阴影部分的面积如图,△ABC是面积为a的等边三角形,AD是BC边上的高,点E、F是AD上的两点,则图中阴影部分的面积为________、解析:观察图形,证明△BEF经过轴对称变换得到
4、△CEF,故△BEF与△CEF的面积相等,则阴影部分面积为等边三角形面积的一半、解:∵△ABC为等边三角形,AD是BC边上的高,∴直线AD为△ABC的对称轴,∴S△BEF=S△CEF,∴阴影部分面积是△ABC面积的一半、∵S△ABC=a,∴阴影部分的面积是.故答案为.方法总结:先观察图形找到突破口——直线AD为△ABC的对称轴,从突破口进行解题就显得比较容易、探究点三:轴对称变换的作图如图,作三角形ABC关于直线l的对称图形(不写作法)、解析:分别作A、B、C关于直线l的对应点,顺次连接即可、解:如图所示:方法总结:作轴对称图形,关键是作出点关
5、于对称轴的对应点、画对称点的方法可总结如下:过已知点作对称轴的垂线段,延长垂线段,使延长部分长度等于垂线段的长度、三、板书设计轴对称变换本节课学习了轴对称变换,通过生活中的情景引入,让学生感悟生活中的美与数学的联系,激发学生的学习兴趣、教学中注意轴对称图形与轴对称变换的区别与联系,可通过具体实例让学生理解