人教版13.4《求最短路径》.ppt

人教版13.4《求最短路径》.ppt

ID:48247868

大小:372.50 KB

页数:20页

时间:2020-01-18

人教版13.4《求最短路径》.ppt_第1页
人教版13.4《求最短路径》.ppt_第2页
人教版13.4《求最短路径》.ppt_第3页
人教版13.4《求最短路径》.ppt_第4页
人教版13.4《求最短路径》.ppt_第5页
资源描述:

《人教版13.4《求最短路径》.ppt》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、方法与技巧四:求最短距离2017年3月秦青良从图中的A地出发,到一条笔直的河边l的P点饮马,然后到B地.P在何处可使他所走的路线全程最短?问题情景BAl追问1这是一个实际问题,你打算首先做什么?将A,B两地抽象为两个点,将河l抽象为一条直线.B··Al这样做的理由是什么?知识回顾探求平面内最短路径的主要原理有以下两种:一是“垂线段最短”,二是“两点之间,线段最短”,求平面内折线的最短路径的最短路径通常用轴对称变换、平移变换、旋转变换转化为“两点之间的线段”。立体图形上的最短路径问题常需借助平面展开图转化为平面问题。1、如图,在菱形ABCD中,对角线AC=6,BD=8,点E、F分别是边

2、AB、BC的中点,点P在AC上运动,在运动过程中,存在PE+PF的最小值,则这个最小值是2、如图,正方形ABCD的边长是2,以正方形ABCD的边AB为边,在正方形内作等边三角形ABE,P为对角线AC上的一点,则PD+PE的最小值为______.3、如图,在Rt△ABC中,∠ACB=90°,AC=6,BC=8,AD是∠BAC的平分线.若P,Q分别是AD和AC上的动点,则PC+PQ的最小值是(  )A.3B.4C.5D.64、如图,四边形ABCD中,∠C=50°,∠B=∠D=90°,E、F分别是BC、DC上的点,当△AEF的周长最小时,∠EAF的度数为(  )5、在底面直径为2cm,高为

3、3cm的圆柱体侧面上,用一条无弹性的丝带从A至C按如图所示的圈数缠绕,则丝带的最短长度为cm.(结果保留π)6、如图,在菱形ABCD中,∠ABC=60°,AB=2,点P是这个菱形内部或边上的一点,若以点P、B、C为顶点的三角形是等腰三角形,则P、D(P、D两点不重合)两点间的最短距离为.课堂回顾:本节课你复习了什么内容?通过本节课复习,你有何收获?探求平面内最短路径的主要原理有以下两种:一是“垂线段最短”,二是“两点之间,线段最短”,求平面内折线的最短路径的最短路径通常用轴对称变换、平移变换、旋转变换转化为“两点之间的线段”。立体图形上的最短路径问题常需借助平面展开图转化为平面问题。

4、谢谢指教!问题3你能用所学的知识证明AC+BC最短吗?B·lA·B′CC′证明:在△AB′C′中,AB′<AC′+B′C′,∴AC+BC<AC′+BC′.即AC+BC最短.若直线l上任意一点(与点C不重合)与A,B两点的距离和都大于AC+BC,就说明AC+BC最小.B·lA·B′CC′追问1证明AC+BC最短时,为什么要在直线l上任取一点C′(与点C不重合),证明AC+BC<AC′+BC′?这里的“C′”的作用是什么?追问2回顾前面的探究过程,我们是通过怎样的过程、借助什么解决问题的?B·lA·B′CC′如图,牧马人从A地出发,先到草地边某一处牧马,再到河边饮马,然后回到B处,请画出

5、最短路径.解:沿AC-CD-DB路线走是最短的路线如图(1)所示:证明:在ON上任意取一点T,在OM上任意取一点R,连接FR、BR、RT、ET、AT,∵A、E关于ON对称,∴AC=EC,某班举行文艺晚会,桌子摆成两直条(如图1中的AO,BO),AO桌面上摆满了桔子,BO桌面上摆满了糖果,坐在C处的学生小明先拿桔子再拿糖果,然后回到空座位D上.请你帮助他设计一条行走路线,使其所走的总路程最短?运用新知练习 如图,一个旅游船从大桥AB的P处前往山脚下的Q处接游客,然后将游客送往河岸BC上,再返回P处,请画出旅游船的最短路径.ABCPQ山河岸大桥基本思路:由于两点之间线段最短,所以首先可连

6、接PQ,线段PQ为旅游船最短路径中的必经线路.将河岸抽象为一条直线BC,这样问题就转化为“点P,Q在直线BC的同侧,如何在BC上找到一点R,使PR与QR的和最小”.ABCPQ山河岸大桥

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。