欢迎来到天天文库
浏览记录
ID:42101363
大小:956.00 KB
页数:19页
时间:2019-09-08
《13.4最短路径(1)》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、八年级上册13.4课题学习最短路径问题www.12999.com引言:前面我们研究过一些关于“两点的所有连线中,线段最短”、“连接直线外一点与直线上各点的所有线段中,垂线段最短”等的问题,我们称它们为最短路径问题.现实生活中经常涉及到选择最短路径的问题,本节将利用数学知识探究数学史中著名的“将军饮马问题”.引入新知问题1相传,古希腊亚历山大里亚城里有一位久负盛名的学者,名叫海伦.有一天,一位将军专程拜访海伦,求教一个百思不得其解的问题:从图中的A地出发,到一条笔直的河边l饮马,然后到B地.到河边什么地方饮马可使他所走的路线全程最短?探索新知BAlwww.12999.com精通数学、物理
2、学的海伦稍加思索,利用轴对称的知识回答了这个问题.这个问题后来被称为“将军饮马问题”.你能将这个问题抽象为数学问题吗?探索新知BAl追问1这是一个实际问题,你打算首先做什么?将A,B两地抽象为两个点,将河l抽象为一条直线.探索新知B··Alwww.12999.com(1)从A地出发,到河边l饮马,然后到B地;(2)在河边饮马的地点有无穷多处,把这些地点与A,B连接起来的两条线段的长度之和,就是从A地到饮马地点,再回到B地的路程之和;探索新知追问2你能用自己的语言说明这个问题的意思,并把它抽象为数学问题吗?探索新知追问2你能用自己的语言说明这个问题的意思,并把它抽象为数学问题吗?(3)现
3、在的问题是怎样找出使两条线段长度之和为最短的直线l上的点.设C为直线上的一个动点,上面的问题就转化为:当点C在l的什么位置时,AC与CB的和最小(如图).BAlC追问1对于问题2,如何将点B“移”到l的另一侧B′处,满足直线l上的任意一点C,都保持CB与CB′的长度相等?探索新知问题2如图,点A,B在直线l的同侧,点C是直线上的一个动点,当点C在l的什么位置时,AC与CB的和最小?B·lA·追问2你能利用轴对称的有关知识,找到上问中符合条件的点B′吗?探索新知问题2如图,点A,B在直线l的同侧,点C是直线上的一个动点,当点C在l的什么位置时,AC与CB的和最小?B·lA·www.129
4、99.com作法:(1)作点B关于直线l的对称点B′;(2)连接AB′,与直线l相交于点C.则点C即为所求.探索新知问题2如图,点A,B在直线l的同侧,点C是直线上的一个动点,当点C在l的什么位置时,AC与CB的和最小?B·lA·B′C探索新知问题3你能用所学的知识证明AC+BC最短吗?B·lA·B′C证明:如图,在直线l上任取一点C′(与点C不重合),连接AC′,BC′,B′C′.由轴对称的性质知,BC=B′C,BC′=B′C′.∴AC+BC=AC+B′C=AB′,AC′+BC′=AC′+B′C′.探索新知问题3你能用所学的知识证明AC+BC最短吗?B·lA·B′CC′探索新知问题3
5、你能用所学的知识证明AC+BC最短吗?B·lA·B′CC′证明:在△AB′C′中,AB′<AC′+B′C′,∴AC+BC<AC′+BC′.即AC+BC最短.若直线l上任意一点(与点C不重合)与A,B两点的距离和都大于AC+BC,就说明AC+BC最小.探索新知B·lA·B′CC′追问1证明AC+BC最短时,为什么要在直线l上任取一点C′(与点C不重合),证明AC+BC<AC′+BC′?这里的“C′”的作用是什么?探索新知追问2回顾前面的探究过程,我们是通过怎样的过程、借助什么解决问题的?B·lA·B′CC′运用新知练习 如图,一个旅游船从大桥AB的P处前往山脚下的Q处接游客,然后将游客送
6、往河岸BC上,再返回P处,请画出旅游船的最短路径.ABCPQ山河岸大桥运用新知基本思路:由于两点之间线段最短,所以首先可连接PQ,线段PQ为旅游船最短路径中的必经线路.将河岸抽象为一条直线BC,这样问题就转化为“点P,Q在直线BC的同侧,如何在BC上找到一点R,使PR与QR的和最小”.ABCPQ山河岸大桥归纳小结(1)本节课研究问题的基本过程是什么?(2)轴对称在所研究问题中起什么作用?www.12999.com教科书复习题13第15题.布置作业
此文档下载收益归作者所有