第7章非线性控制系统分析.ppt

第7章非线性控制系统分析.ppt

ID:48233559

大小:2.81 MB

页数:78页

时间:2020-01-18

第7章非线性控制系统分析.ppt_第1页
第7章非线性控制系统分析.ppt_第2页
第7章非线性控制系统分析.ppt_第3页
第7章非线性控制系统分析.ppt_第4页
第7章非线性控制系统分析.ppt_第5页
资源描述:

《第7章非线性控制系统分析.ppt》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、第7章非线性控制系统分析描述函数法相平面法引言$1引言非线性:指元件或环节的静特性不是按线性规律变化。非线性系统:如果一个控制系统,包含一个或一个以上具有非线性静特性的元件或环节,则称这类系统为非线性系统,其特性不能用线性微分方程来描述。一.控制系统中的典型非线性特性下面介绍的这些特性中,一些是组成控制系统的元件所固有的,如饱和特性,死区特性和滞环特性等,这些特性一般来说对控制系统的性能是不利的;另一些特性则是为了改善系统的性能而人为加入的,如继电器特性,变增益特性,在控制系统中加入这类特性,一般来说能使系统具有比线性系统更为优良的

2、动态特性。(1)饱和特性(2)死区特性式中a-线性区宽度k-线性区特性的斜率危害:使系统输出信号在相位上产生滞后,从而降低系统的相对稳定性,使系统产生自持振荡。(3)间隙特性功能:改善系统性能的切换元件(4)继电器特性特点:使系统在大误差信号时具有较大的增益,从而使系统响应迅速;而在小误差信号时具有较小的增益,从而提高系统的相对稳定性。同时抑制高频低振幅噪声,提高系统响应控制信号的准确度。本质非线性:不能应用小偏差线性化概念将其线性化非本质非线性:可以进行小偏差线性化的非线性特性二.非线性控制系统的特性(1)对于线性系统,描述其运动

3、状态的数学模型是线性微分方程,它的根本标志就在于能使用叠加原理。而非线性系统,其数学模型为非线性微分方程,不能使用叠加原理。(5)变增益特性对非线性系统,一般并不需要求解其输出响应过程。通常是把讨论问题的重点放在系统是否稳定,系统是否产生自持振荡,计算自持振荡的振幅和频率,消除自持振荡等有关稳定性的分析上。(2)在线性系统中,系统的稳定性只与其结构和参数有关,而与初始条件无关。对于线性定常系统,稳定性仅取决于特征根在s平面的分布。但非线性系统的稳定性除和系统的结构形式及参数有关外,还和初始条件有关。在不同的初始条件下,运动的最终状态

4、可能完全不同。如有的系统初始值处于较小区域内时是稳定的,而当初始值处于较大区域内时则变为不稳定。反之,也可能初始值大时系统稳定,而初始值小则不稳定。甚至还会出现更为复杂的情况。(3)在非线性系统中,除了从平衡状态发散或收敛于平衡状态两种运动形式外,往往即使无外作用存在,系统也可能产生具有一定振幅和频率的稳定的等幅振荡。自持振荡:无外作用时非线性系统内部产生的稳定的等幅振荡称为自持振荡,简称自振荡。改变非线性系统的结构和参数,可以改变自持振荡的振幅和频率,或消除自持振荡。对线性系统,围绕其平衡状态只有发散和收敛两种运动形式,其中不可能

5、产生稳定的自持振荡。(4)在线性系统中,输入为正弦函数时,其输出的稳态分量也是同频率的正弦函数,输入和稳态输出之间仅在振幅和相位上有所不同,因此可以用频率响应来描述系统的固有特性。而非线性系统输出的稳态分量在一般情况下并不具有与输入相同的函数形式。三.非线性系统的研究方法现在尚无一般的通用方法来分析和设计非线性控制系统。对非本质非线性系统基于小偏差线性化概念来处理对本质非线性系统二阶系统:相平面法高阶系统:描述函数法$2相平面法相平面法是一种通过图解法求解二阶非线性系统的准确方法。一.基本概念二.线性系统的相轨迹相轨迹的斜率不能由该

6、点的坐标值单值地确定的点称为奇点。(6)三.相轨迹的绘制b.直接积分法(2)图解法a.等倾线法等倾线:在相平面内对应相轨迹上具有等斜率点的连线原理步骤:a.根据等倾线方程式(*),做出不同值的等倾线b.根据初始条件确定相轨迹的起始点c.从起始点处的等倾线向相邻的第二条等倾线画直线,它的斜率近似等于这两条相邻等倾线斜率的平均值。再从该直线与第二条等倾线的交点向相邻的第三条等倾线画直线。这段直线的斜率等于第二.第三等倾线斜率的平均值,如此继续下去,即可作出相轨迹。四.由相轨迹求时间解2.根据求时间解以为横坐标,为纵坐标则有如下轨迹便是阴

7、影部分的面积五.非线性系统的相平面分析1.基本概念实奇点:奇点位于对应的线性工作区域内虚奇点:奇点位于对应的线性工作区域外极限环:极限环是相平面图上一个孤立的封闭轨迹,所有极限环附近的相轨迹都将卷向极限环,或从极限环卷出。极限环内部(或外部)的相轨迹,总是不可能穿过极限环而进入它的外部(或内部)。(1)稳定极限环在极限环附近,起始于极限环外部或内部的相轨迹均收敛于该极限环。这时,系统表现为等幅持续振荡。(2)不稳定极限环在极限环附近的相轨迹总是从极限环发散出去。在这种情况下,如果相轨迹起始于极限环内,则该相轨迹收敛于极限环内的奇点,

8、如果相轨迹起始于极限环外,则该相轨迹发散至无穷远。(3)半稳定极限环如果起始于极限环外部的相轨迹,从极限环发散出去,而起始于极限环内部各点的相轨迹,收敛于极限环;或者相反,起始于极限环外部各点的相轨迹收敛于极限环,而起始于极限环内部各

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。