第1章 线性规划与单纯形法-第1节.ppt

第1章 线性规划与单纯形法-第1节.ppt

ID:48233552

大小:568.00 KB

页数:39页

时间:2020-01-18

第1章 线性规划与单纯形法-第1节.ppt_第1页
第1章 线性规划与单纯形法-第1节.ppt_第2页
第1章 线性规划与单纯形法-第1节.ppt_第3页
第1章 线性规划与单纯形法-第1节.ppt_第4页
第1章 线性规划与单纯形法-第1节.ppt_第5页
资源描述:

《第1章 线性规划与单纯形法-第1节.ppt》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库

1、第1章线性规划与单纯形法线性规划是运筹学的一个最重要分支。线性规划在理论上比较成熟,在实用中的应用日益广泛与深入。特别是在电子计算机能处理成千上万个约束条件和决策变量的线性规划问题之后,线性规划的适用领域更为广泛了。从解决技术问题的最优化设计到工业、农业、商业、交通运输业、军事、经济计划和管理决策等领域都可以发挥作用。它已是现代科学管理的重要手段之一。解线性规划问题的方法有多种,以下仅介绍单纯形法。第1节线性规划问题及其数学模型1.1问题的提出在实际生产管理和经营活动中,经常遇到这样的问题,即如何合理地利用有限的人力、物力、财力等资源,以便得到最

2、好的经济效果,实现经营的最优化。下面从一个简化的生产计划安排问题入手来探讨线性规划问题及其数学模型。例1:某工厂在计划期内要安排生产Ⅰ、Ⅱ两种产品,已知生产单位产品所需的设备台时及A、B两种原材料的消耗,如表1-1所示。资源产品ⅠⅡ拥有量设备128台时原材料A4016kg原材料B0412kg该工厂每生产一件产品Ⅰ可获利2元,每生产一件产品Ⅱ可获利3元,问应如何安排计划使该工厂获利最多?数学模型例2.简化的环境保护问题靠近某河流有两个化工厂(见图1-1),流经第一化工厂的河流流量为每天500万立方米,在两个工厂之间有一条流量为每天200万立方米的支

3、流。图1-1第一化工厂每天排放含有某种有害物质的工业污水2万立方米,第二化工厂每天排放这种工业污水1.4万立方米。从第一化工厂排出的工业污水流到第二化工厂以前,有20%可自然净化。根据环保要求,河流中工业污水的含量应不大于0.2%。这两个工厂都需各自处理一部分工业污水。第一化工厂处理工业污水的成本是1000元/万立方米。第二化工厂处理工业污水的成本是800元/万立方米。现在要问在满足环保要求的条件下,每厂各应处理多少工业污水,使这两个工厂总的处理工业污水费用最小。设:第一化工厂每天处理工业污水量为x1万立方米,第二化工厂每天处理工业污水量为x2万

4、立方米数学模型例3:某班级响应“植树造林,绿化祖国”的号召,组织全班同学去植树,已知各种指标如下表所示,问如何安排同学植树能够使得所栽植的树木的数量最大。挖坑植苗浇水人数男同学20403025女同学10201515共同的特征:每一个线性规划问题都用一组决策变量表示某一方案,这组决策变量的值就代表一个具体方案。一般这些变量取值是非负且连续的;(2)要有各种资源和使用有关资源的技术数据,创造新价值的数据;(3)存在可以量化的约束条件,这些约束条件可以用一组线性等式或线性不等式来表示;(4)要有一个达到目标的要求,它可用决策变量的线性函数(称为目标函数

5、)来表示。按问题的不同,要求目标函数实现最大化或最小化。它们的对应关系可用表格表示:线性规划的一般模型形式1.2图解法例1是二维空间(平面)线性规划问题,可用作图法直观地来表述它的求解。因存在必须在直角坐标的第1象限内作图,求解。图1-2图1-3目标值在(4,2)点,达到最大值14目标函数可能出现的几种情况(1)无穷多最优解(多重最优解),见图1-4(2)无界解,见图1-5-1(3)无可行解,见图1-5-2图1-4无穷多最优解(多重最优解)目标函数maxz=2x1+4x2图1-5-1无界解无可行解当存在矛盾的约束条件时,为无可行域。如果在例1的数

6、学模型中增加一个约束条件:该问题的可行域为空集,即无可行解,图1-5-2不存在可行域增加的约束条件1.3线性规划问题的标准型式线性规划问题的几种表示形式用向量表示为:用矩阵表示为:如何变换为标准型:(1)若要求目标函数实现最小化,即minz=CX。这时只需将目标函数最小化变换求目标函数最大化,即令z′=-z,于是得到maxz′=-CX。这就同标准型的目标函数的形式一致了。(2)约束方程为不等式。这里有两种情况:一种是约束方程为“≤”不等式,则可在“≤”不等式的左端加入非负松弛变量,把原“≤”不等式变为等式;另一种是约束方程为“≥”不等式,则可在“

7、≥”不等式的左端减去一个非负剩余变量(也可称松弛变量),把不等式约束条件变为等式约束条件。下面举例说明。例3将例1的数学模型化为标准型。例1的数学模型,加松驰变量后(3)若存在取值无约束的变量xk,可令,其中。例4将下述线性规划问题化为标准型处理的步骤:(1)用x4-x5替换x3,其中x4,x5≥0;(2)在第一个约束不等式≤号的左端加入松弛变量x6;(3)在第二个约束不等式≥号的左端减去剩余变量x7;(4)令z′=-z,把求minz改为求maxz′,即可得到该问题的标准型例4的标准型1.4线性规划问题的解的概念1.可行解2.基3.基可行解4.可

8、行基1.可行解满足约束条件(1-5),(1-6)式的解X=(x1,x2,…,xn)T,称为线性规划问题的可行解,其中使目标函数达到最大值

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。