欢迎来到天天文库
浏览记录
ID:48223712
大小:493.00 KB
页数:16页
时间:2020-01-18
《李伟平-5简单概率模型.ppt》由会员上传分享,免费在线阅读,更多相关内容在应用文档-天天文库。
1、简单概率模型1传送系统的效率2报童的诀窍3随机存贮策略传送带挂钩产品工作台工人将生产出的产品挂在经过他上方的空钩上运走,若工作台数固定,挂钩数量越多,传送带运走的产品越多。背景在生产进入稳态后,给出衡量传送带效率的指标,研究提高传送带效率的途径1传送系统的效率问题分析进入稳态后为保证生产系统的周期性运转,应假定工人们的生产周期相同,即每人作完一件产品后,要么恰有空钩经过他的工作台,使他可将产品挂上运走,要么没有空钩经过,迫使他放下这件产品并立即投入下件产品的生产。可以用一个周期内传送带运走的产品数占产品总数的比例,作为衡量传送带效
2、率的数量指标。工人们生产周期虽然相同,但稳态下每人生产完一件产品的时刻不会一致,可以认为是随机的,并且在一个周期内任一时刻的可能性相同。模型假设1)n个工作台均匀排列,n个工人生产相互独立,生产周期是常数;2)生产进入稳态,每人生产完一件产品的时刻在一个周期内是等可能的;3)一周期内m个均匀排列的挂钩通过每一工作台的上方,到达第一个工作台的挂钩都是空的;4)每人在生产完一件产品时都能且只能触到一只挂钩,若这只挂钩是空的,则可将产品挂上运走;若该钩非空,则这件产品被放下,退出运送系统。模型建立定义传送带效率为一周期内运走的产品数(记
3、作s,待定)与生产总数n(已知)之比,记作D=s/n若求出一周期内每只挂钩非空的概率p,则s=mp为确定s,从工人考虑还是从挂钩考虑,哪个方便?设每只挂钩为空的概率为q,则p=1-q如何求概率设每只挂钩不被一工人触到的概率为r,则q=rn设每只挂钩被一工人触到的概率为u,则r=1-uu=1/mp=1-(1-1/m)nD=m[1-(1-1/m)n]/n一周期内有m个挂钩通过每一工作台的上方模型解释若(一周期运行的)挂钩数m远大于工作台数n,则传送带效率(一周期内运走产品数与生产总数之比)定义E=1-D(一周期内未运走产品数与生产总数
4、之比)提高效率的途径:增加m当n远大于1时,En/2m~E与n成正比,与m成反比若n=10,m=40,D887.5%2报童的诀窍问题报童售报:a(零售价)>b(购进价)>c(退回价)售出一份赚a-b;退回一份赔b-c每天购进多少份可使收入最大?分析购进太多卖不完退回赔钱购进太少不够销售赚钱少应根据需求确定购进量每天需求量是随机的优化问题的目标函数应是长期的日平均收入每天收入是随机的存在一个合适的购进量等于每天收入的期望建模设每天购进n份,日平均收入为G(n)调查需求量的随机规律——每天需求量为r的概率f(r),r=0,
5、1,2…准备求n使G(n)最大已知售出一份赚a-b;退回一份赔b-c求解将r视为连续变量结果解释nP1P2取n使a-b~售出一份赚的钱b-c~退回一份赔的钱0rp3随机存贮策略问题以周为时间单位;一周的商品销售量为随机;周末根据库存决定是否订货,供下周销售。(s,S)存贮策略制订下界s,上界S,当周末库存小于s时订货,使下周初的库存达到S;否则,不订货。考虑订货费、存贮费、缺货费、购进费,制订(s,S)存贮策略,使(平均意义下)总费用最小模型假设每次订货费c0,每件商品购进价c1,每件商品一周贮存费c2,每件商品缺货损失费c3(c
6、17、(S)sI(S)+c0I(x)在x=S处达到最小值I(S)I(x)图形建模与求解J(u)与I(x)相似I(S)的最小正根s
7、(S)sI(S)+c0I(x)在x=S处达到最小值I(S)I(x)图形建模与求解J(u)与I(x)相似I(S)的最小正根s
此文档下载收益归作者所有