锐角三角函数与圆综合训练.doc

锐角三角函数与圆综合训练.doc

ID:48216993

大小:180.50 KB

页数:5页

时间:2020-01-23

锐角三角函数与圆综合训练.doc_第1页
锐角三角函数与圆综合训练.doc_第2页
锐角三角函数与圆综合训练.doc_第3页
锐角三角函数与圆综合训练.doc_第4页
锐角三角函数与圆综合训练.doc_第5页
资源描述:

《锐角三角函数与圆综合训练.doc》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库

1、人教版中考数学锐角三角函数与圆综合训练一.基础练习1.如图,AC是⊙O的直径,PA是⊙O的切线,A为切点,连接PC交⊙O于点B,连接AB,且PC=10,PA=6.求:(1)⊙O的半径;(2)cos∠BAC的值.跟踪训练.如图,AB为⊙O的直径,弦CD⊥AB,垂足为点E.K为上一动点,AK,DC的延长线相交于点F,连接CK,KD.(1)求证:∠AKD=∠CKF;(2)若AB=10,CD=6,求tan∠CKF的值.二.综合型大题例题一如图,D为⊙O上一点,点C在直径BA的延长线上,∠CDA=∠CBD.(1)求证:CD2=CA•CB

2、;(2)求证:CD是⊙O的切线;(3)过点B作⊙O的切线交CD的延长线于点E,若BC=12,tan∠CDA=,求BE的长.5巩固练习.如图,已知⊙O的直径AB与弦CD相交于点E,AB⊥CD,⊙O的切线BF与弦AD的延长线相交于点F.(1)求证:CD∥BF;(2)若⊙O的半径为5,cos∠BCD=,求线段AD的长.例题二如图,AD是△ABC的角平分线,以点C为圆心,CD为半径作圆交BC的延长线于点E,交AD于点F,交AE于点M,且∠B=∠CAE,EF:FD=4:3(1)求证:点F是AD的中点;(2)求cos∠AED的值;(3)如

3、果BD=10,求半径CD的长.考点:相似三角形的判定与性质;勾股定理;圆周角定理;解直角三角形.分析:(1)由AD是△ABC的角平分线,∠B=∠CAE,易证得∠ADE=∠DAE,即可得ED=EA,又由ED是直径,根据直径所对的圆周角是直角,可得EF⊥AD,由三线合一的知识,即可判定点F是AD的中点;(2)首先连接DM,设EF=4k,DF=3k,然后由勾股定理求得ED的长,继而求得DM与ME的长,由余弦的定义,即可求得答案;(3)易证得△AEC∽△BEA,然后由相似三角形的对应边成比例,可得方程:(5k)2=k•(10+5k),

4、解此方程即可求得答案.解答:5如图,⊙O是△ABC的外接圆,AB为直径,OD∥BC交⊙O于点D,交AC于点E,连接AD,BD,CD.(1)求证:AD=CD;(2)若AB=10,cos∠ABC=,求tan∠DBC的值.综合练习1、如图,AB是⊙O的直径,PA,PC分别与⊙O相切于点A,C,PC交AB的延长线于点D,DE⊥PO交PO的延长线于点E.(1)求证:∠EPD=∠EDO.(2)若PC=6,tan∠PDA=,求OE的长.[中2、如图,AB是⊙0的直径,C是⊙0上的一点,直线MN经过点C,过点A作直线MN的垂线,垂足为点D,且

5、∠BAC=∠DAC.(1)猜想直线MN与⊙0的位置关系,并说明理由;(2)若CD=6,cos=∠ACD=,求⊙0的半径.53、已知:如图,是的直径,是上一点,于点,过点作的切线,交的延长线于点,连结.(1)求证:与相切;(2)连结并延长交于点,若,求的长.图11ACBDEFOP4、如图11,PB为⊙O的切线,B为切点,直线PO交⊙O于点E,F,过点B作PO的垂线BA,垂足为点D,交⊙O于点A,延长AO与⊙O交于点C,连接BC,AF.(1)求证:直线PA为⊙O的切线;(2)试探究线段EF,OD,OP之间的等量关系,并加以证明;(

6、3)若BC=6,tan∠F=,求cos∠ACB的值和线段PE的长.55、如图,AB是⊙O的直径,弦CD⊥AB于H,过CD延长线上一点E作⊙O的切线交AB的延长线于F.切点为G,连接AG交CD于K.(1)求证:KE=GE;(2)若=KD·GE,试判断AC与EF的位置关系,并说明理由;(3)在(2)的条件下,若sinE=,AK=,求FG的长.课外作业如图11,AB是⊙O的弦,D是半径OA的中点,过D作CD⊥OA交弦AB于点E,交⊙O于F,且CE=CB。(1)求证:BC是⊙O的切线;(2)连接AF、BF,求∠ABF的度数;(3)如果

7、CD=15,BE=10,sinA=,求⊙O的半径。5

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。