欢迎来到天天文库
浏览记录
ID:48201458
大小:45.30 KB
页数:2页
时间:2019-11-13
《2019-2020年高考数学复习专题14计数原理与概率统计排列与组合易错点.doc》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、2019-2020年高考数学复习专题14计数原理与概率统计排列与组合易错点主标题:排列与组合易错点副标题:从考点分析排列与组合易错点,为学生备考提供简洁有效的备考策略。关键词:排列,组合,易错点难度:2重要程度:4内容:【易错点】1.排列与组合的基本概念、性质(1)所有元素完全相同的两个排列为相同排列.(×)(2)两个组合相同的充要条件是其中的元素完全相同.(√)(3)若组合式C=C,则x=m成立.(×)2.排列与组合的应用(4)5个人站成一排,其中甲、乙两人不相邻的排法有A-AA=72种.(√)(5)(教材习题改编)由0,1,2,3这四个数字组成
2、的四位数中,有重复数字的四位数共有3×43-A=168(个).(×)(6)将序号分别为1,2,3,4,5的5张参观券全部分给4人,每人至少1张,如果分给同一人的2张参观券连号,那么不同的分法种数是4A=96种.(√)[剖析]1.一个区别 排列与组合最根本的区别在于“有序”和“无序”.取出元素后交换顺序,如果与顺序有关是排列,如果与顺序无关即是组合,如(1)忽视了元素的顺序.2.求解排列、组合问题的思路:“排组分清,加乘明确;有序排列,无序组合;分类相加,分步相乘.”【典例】现有16张不同的卡片,其中红色、黄色、蓝色、绿色卡片各4张.从中任取3张,要
3、求这3张卡片不能是同一种颜色,且红色卡片至多1张,不同取法的种数为( ).A.232B.256C.472D.484[错解] 第一类,含有一张红色卡片,取出红色卡片有C种方法,再从黄、蓝、绿三色中选出两色并各取一张卡片有CCC种方法.因此满足条件的取法有C·CCC=192种.第二类,不含有红色卡片,从其余三色卡片中各取一张有CCC=64种取法.∴由分类加法计数原理,不同的取法共有192+64=256种.[答案] B[错因] 错解的原因是没有理解“3张卡片不能是同一种颜色”的含义,误认为“取出的三种颜色不同”.[正解] 第一类,含有1张红色卡片,不同
4、的取法CC=264(种).第二类,不含有红色卡片,不同的取法C-3C=220-12=208(种).由分类加法计数原理知,不同的取法共有264+208=472(种).[答案] C[注意] (1)准确理解题意,抓住关键字词的含义,“3张卡片不能是同一种颜色”是指“两种颜色或三种颜色”都满足要求.(2)选择恰当分类标准,避免重复遗漏,出现“至少、至多”型问题,注意间接法的运用.
此文档下载收益归作者所有