资源描述:
《《22.1.3_二次函数y=ax2+k图象和性质1》课件.ppt》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、22.1.3二次函数y=a(x-h)2+k的图象和性质——y=ax2+ky=x2-1y=x2+1y=ax2a>0a<0图象开口对称性顶点增减性二次函数y=ax2的性质开口向上开口向下a的绝对值越大,开口越小关于y轴对称顶点坐标是原点(0,0)顶点是最低点顶点是最高点在对称轴左侧递减在对称轴右侧递增在对称轴左侧递增在对称轴右侧递减二次函数的图像例2.在同一直角坐标系中,画出二次函数y=x2+1和y=x2-1的图像解:先列表x…-3-2-10123…y=x2+1y=x2-1…105212510……830-
2、1038…然后描点画图,得到y=x2+1,y=x2-1的图像.12345x12345678910yo-1-2-3-4-5(1)抛物线y=x2+1,y=x2-1的开口方向、对称轴、顶点各是什么?(2)抛物线y=x2+1,y=x2-1与抛物线y=x2有什么关系?讨论抛物线y=x2+1:开口向上,顶点为(0,1).对称轴是y轴,抛物线y=x2-1:开口向上,顶点为(0,-1).对称轴是y轴,y=x2+1y=x2-1二次函数的图像抛物线y=x2+1,y=x2-1与抛物线y=x2的关系:12345x123456
3、78910yo-1-2-3-4-5y=x2+1抛物线y=x2抛物线y=x2-1向上平移1个单位把抛物线y=2x2+1向上平移5个单位,会得到那条抛物线?向下平移3.4个单位呢?抛物线y=x2向下平移1个单位思考(1)得到抛物线y=2x2+6(2)得到抛物线y=2x2-2.4y=x2-1y=x2抛物线y=x2+1归纳一般地,抛物线y=ax2+k有如下特点:(1)当a>0时,开口向上;当a<0时,开口向下;(2)对称轴是y轴;(3)顶点是(0,k).12345x12345678910yo-1-2-3-4-
4、5抛物线y=ax2+k可以由抛物线y=ax2向上或向下平移
5、k
6、得到.(k>0,向上平移;k<0向下平移.)12345x-1-2-3-4-5-6-7-8-91yo-1-2-3-4-5-10y=ax2+ka>0a<0图象开口对称性顶点(0,k)增减性二次函数y=ax2+k的性质开口向上开口向下a的绝对值越大,开口越小关于y轴对称顶点是最低点顶点是最高点在对称轴左侧递减在对称轴右侧递增在对称轴左侧递增在对称轴右侧递减(1)抛物线y=−2x2+3的顶点坐标是,对称轴是,在___侧,y随着x的增大而增大;在侧
7、,y随着x的增大而减小,当x=_____时,函数y的值最大,最大值是,它是由抛物线y=−2x2线怎样平移得到的__________.练习(2)抛物线y=x²-5的顶点坐标是____,对称轴是____,在对称轴的左侧,y随着x的;在对称轴的右侧,y随着x的,当x=____时,函数y的值最___,最小值是.1、按下列要求求出二次函数的解析式:(1)已知抛物线y=ax2+c经过点(-3,2)(0,-1),求该抛物线线的解析式。(2)形状与y=-2x2+3的图象形状相同,但开口方向不同,顶点坐标是(0,1)的
8、抛物线解析式。(3)对称轴是y轴,顶点纵坐标是-3,且经过(1,2)的点的解析式,做一做:2、在同一直角坐标系中,一次函数y=ax+c和二次函数y=ax2+c的图象大致是如图中的()y=ax2+ka>0a<0图象开口对称性顶点(0,k)增减性二次函数y=ax2+k的性质开口向上开口向下a的绝对值越大,开口越小关于y轴对称顶点是最低点顶点是最高点在对称轴左侧递减在对称轴右侧递增在对称轴左侧递增在对称轴右侧递减小结再见例:画出函数的图像xy=-1/2(x+1)2..................0-3-
9、2-1231y=-1/2(x-1)2-2-0.50-0.5-2-4.5-4.5-2-0.50-0.5-2x=-1x=1想一想:三条抛物线有什么关系?答:形状相同,位置不同。三个图象之间通过沿x轴平移可重合。课堂练习画出下列函数的图象,观察他们的位置关系,说出它们的开口方向、对称轴、顶点的位置。能说出抛物线的开口方向及对称轴、顶点的位置吗?抛物线开口方向对称轴顶点坐标y=ax2(a>0)y=a(x-h)2(a>0)y=ax2(a<0)y=a(x+h)2(a<0)小结向上向上向下向下Y轴X=-hY轴X=h
10、(0,0)(h,0)(0,0)(-h,0)26.二次函数y=a(x+m)2+k的图像y=ax2y=a(x-h)2y=ax2+cy=ax2c>0c<0上移下移左加右减说出平移方式,并指出其顶点与对称轴。顶点x轴上:(h,0)顶点y轴上:(0,c)问题:顶点不在坐标轴上的二次函数又如何呢?1.把二次函数y=6(x+3)2的图像,沿y轴向下平移2个单位,向左平移3个单位,得到____________的图像.2.把二次函数_____________的图像,沿x轴