资源描述:
《2019-2020年高中数学1.52定积分概念与性质教案新人教A版选修2-2.doc》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、2019-2020年高中数学1.52定积分概念与性质教案新人教A版选修2-2一、定积分问题举例1.曲边梯形的面积曲边梯形:设函数y=f(x)在区间[a,b]上非负、连续.由直线x=a、x=b、y=0及曲线y=f(x)所围成的图形称为曲边梯形,其中曲线弧称为曲边.求曲边梯形的面积的近似值:将曲边梯形分割成一些小的曲边梯形,每个小曲边梯形都用一个等宽的小矩形代替,每个小曲边梯形的面积都近似地等于小矩形的面积,则所有小矩形面积的和就是曲边梯形面积的近似值.具体方法是:在区间[a,b]中任意插入若干个分点a=x02、,把[a,b]分成n个小区间[x0,x1],[x1,x2],[x2,x3],×××,[xn-1,xn],它们的长度依次为Dx1=x1-x0,Dx2=x2-x1,×××,Dxn=xn-xn-1.经过每一个分点作平行于y轴的直线段,把曲边梯形分成n个窄曲边梯形.在每个小区间[xi-1,xi]上任取一点xi,以[xi-1,xi]为底、f(xi)为高的窄矩形近似替代第i个窄曲边梯形(i=1,2,×××,n),把这样得到的n个窄矩阵形面积之和作为所求曲边梯形面积A的近似值,即A»f(x1)Dx1+f(x2)Dx2+×××+f(xn)Dxn.求曲边梯形的面
3、积的精确值:显然,分点越多、每个小曲边梯形越窄,所求得的曲边梯形面积A的近似值就越接近曲边梯形面积A的精确值,因此,要求曲边梯形面积A的精确值,只需无限地增加分点,使每个小曲边梯形的宽度趋于零.记l=max{Dx1,Dx2,×××,Dxn},于是,上述增加分点,使每个小曲边梯形的宽度趋于零,相当于令l®0.所以曲边梯形的面积为.2.变速直线运动的路程设物体作直线运动,已知速度v=v(t)是时间间隔[T1,T2]上t的连续函数,且v(t)³0,计算在这段时间内物体所经过的路程S.求近似路程:我们把时间间隔[T1,T2]分成n个小的时间间隔Dti,
4、在每个小的时间间隔Dti内,物体运动看成是均速的,其速度近似为物体在时间间隔Dti内某点xi的速度v(ti),物体在时间间隔Dti内运动的距离近似为DSi=v(ti)Dti.把物体在每一小的时间间隔Dti内运动的距离加起来作为物体在时间间隔[T1,T2]内所经过的路程S的近似值.具体做法是:在时间间隔[T1,T2]内任意插入若干个分点T1=t05、n=tn-tn-1.相应地,在各段时间内物体经过的路程依次为DS1,DS2,×××,DSn.在时间间隔[ti-1,ti]上任取一个时刻ti(ti-16、x=a、x=b、y=0及曲线y=f(x)所围成的曲边梯形的面积.(1)用分点a=x07、时间间隔[T1,T2]上t的连续函数,且v(t)³0,计算在这段时间内物体所经过的路程S.(1)用分点T1=t08、抛开上述问题的具体意义,抓住它们在数量关系上共同的本质与特性加以概括,就抽象出下述定积分的定义.定义设函数f(x)在[a,b]上有界,在[a,b]中任