欢迎来到天天文库
浏览记录
ID:48079410
大小:773.50 KB
页数:24页
时间:2020-01-14
《信号与系统简明教程教案第3章.ppt》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、第三章线性时不变系统的时域分析3.5常系数线性微分方程的经典解法一、微分方程的经典解二、关于0-和0+初始值3.3连续线性时不变系统的零输入响应与零状态响应一、零输入响应二、零状态响应3.4连续线性时不变系统的冲激响应与阶跃响应一、冲激响应二、阶跃响应LTI连续系统的时域分析,归结为:建立并求解线性微分方程。由于在其分析过程涉及的函数变量均为时间t,故称为时域分析法。这种方法比较直观,物理概念清楚,是学习各种变换域分析法的基础。第3章线性时不变系统的时域分析3.5常系数线性微分方程的经典解法3.5常系数线性微分方程的经典解法一、微分方
2、程的经典解y(n)(t)+an-1y(n-1)(t)+…+a1y(1)(t)+a0y(t)=bmf(m)(t)+bm-1f(m-1)(t)+…+b1f(1)(t)+b0f(t)微分方程的经典解:y(t)(完全解)=yh(t)(齐次解)+yp(t)(特解)齐次解是齐次微分方程y(n)+an-1y(n-1)+…+a1y(1)(t)+a0y(t)=0的解。yh(t)的函数形式由上述微分方程的特征根确定。特解的函数形式与激励函数的形式有关。齐次解的函数形式仅与系统本身的特性有关,而与激励f(t)的函数形式无关,称为系统的固有响应或自由响应;特
3、解的函数形式由激励确定,称为强迫响应。3.5常系数线性微分方程的经典解法常见特征根所对应的齐次解yh(t)特征根λ齐次解yh(t)单实根2重实根不同激励所对应的特解yp(t)激励f(t)特解yp(t)A或Aε(t)tε(t)所有特征根均不等于0所有特征根均不等于0α不等于特征根α等于特征单根例描述某系统的微分方程为y”(t)+5y’(t)+6y(t)=f(t)求(1)当f(t)=2e-t,t≥0;y(0)=2,y’(0)=-1时的全解;(2)当f(t)=e-2t,t≥0;y(0)=1,y’(0)=0时的全解。解:(1)特征方程为λ2+
4、5λ+6=0其特征根λ1=–2,λ2=–3。齐次解为yh(t)=C1e–2t+C2e–3t当f(t)=2e–t时,其特解可设为yp(t)=Pe–t将其代入微分方程得Pe–t+5(–Pe–t)+6Pe–t=2e–t解得P=1于是特解为yp(t)=e–t全解为:y(t)=yh(t)+yp(t)=C1e–2t+C2e–3t+e–t其中待定常数C1,C2由初始条件确定。y(0)=C1+C2+1=2,y’(0)=–2C1–3C2–1=–1解得C1=3,C2=–2最后得全解y(t)=3e–2t–2e–3t+e–t,t≥03.5常系数线性微分方程的
5、经典解法(2)齐次解同上。当激励f(t)=e–2t时,其指数与特征根之一相重。由表知:其特解为yp(t)=(P1t+P0)e–2t代入微分方程可得P1e-2t=e–2t所以P1=1但P0不能求得。全解为y(t)=C1e–2t+C2e–3t+te–2t+P0e–2t=(C1+P0)e–2t+C2e–3t+te–2t3.5常系数线性微分方程的经典解法将初始条件代入,得y(0)=(C1+P0)+C2=1,y’(0)=–2(C1+P0)–3C2+1=0解得C1+P0=2,C2=–1最后得微分方程的全解为y(t)=2e–2t–e–3t+te–2
6、t,t≥0上式第一项的系数C1+P0=2,不能区分C1和P0,因而也不能区分自由响应和强迫响应。二、关于0-和0+初始值若输入f(t)是在t=0时接入系统,则确定待定系数Ci时用t=0+时刻的初始值,即y(j)(0+)(j=0,1,2…,n-1)。而y(j)(0+)包含了输入信号的作用,不便于描述系统的历史信息。在t=0-时,激励尚未接入,该时刻的值y(j)(0-)反映了系统的历史情况而与激励无关。称这些值为初始状态或起始值。通常,对于具体的系统,初始状态一般容易求得。这样为求解微分方程,就需要从已知的初始状态y(j)(0-)设法求得
7、y(j)(0+)。下列举例说明。3.5常系数线性微分方程的经典解法例:描述某系统的微分方程为y”(t)+3y’(t)+2y(t)=2f’(t)+6f(t)已知y(0-)=2,y’(0-)=0,f(t)=ε(t),求y(0+)和y’(0+)。解:将输入f(t)=ε(t)代入上述微分方程得y”(t)+3y’(t)+2y(t)=2δ(t)+6ε(t)(1)利用系数匹配法分析:上式对于t=0-也成立,在0-8、y’(0+)≠y’(0-)。但y’(t)不含冲激函数,否则y”(t)将含有δ’(t)项。由于y’(t)中不含δ(t),故y(t)在t=0处是连续的。故y(0+)=y(0-)=23.5常系数线性微分方程的经典解法对式(1)
8、y’(0+)≠y’(0-)。但y’(t)不含冲激函数,否则y”(t)将含有δ’(t)项。由于y’(t)中不含δ(t),故y(t)在t=0处是连续的。故y(0+)=y(0-)=23.5常系数线性微分方程的经典解法对式(1)
此文档下载收益归作者所有