欢迎来到天天文库
浏览记录
ID:48065020
大小:142.00 KB
页数:6页
时间:2020-01-18
《高中数学数列知识点总结.doc》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库。
1、.....1.等差数列的定义与性质定义:(为常数),等差中项:成等差数列前项和性质:是等差数列(1)若,则(2)数列仍为等差数列,仍为等差数列,公差为;(3)若三个成等差数列,可设为(4)若是等差数列,且前项和分别为,则(5)为等差数列(为常数,是关于的常数项为0的二次函数)的最值可求二次函数的最值;或者求出中的正、负分界项,即:当,解不等式组可得达到最大值时的值.当,由可得达到最小值时的值.(6)项数为偶数的等差数列,有,.(7)项数为奇数的等差数列,有,,..专业word可编辑......2.等比数列的定义与性质定义:(为常数,)
2、,.等比中项:成等比数列,或.前项和:(要注意!)性质:是等比数列(1)若,则(2)仍为等比数列,公比为.注意:由求时应注意什么?时,;时,.3.求数列通项公式的常用方法(1)求差(商)法如:数列,,求(2)叠乘法如:数列中,,求.专业word可编辑......(3)等差型递推公式由,求,用迭加法[练习]数列中,,求()(4)等比型递推公式(为常数,)可转化为等比数列,设令,∴,∴是首项为为公比的等比数列∴,∴(5)倒数法如:,求附:公式法、利用、累加法、累乘法.构造等差或等比或、待定系数法、对数变换法、迭代法、数学归纳法、换元法)4
3、.求数列前n项和的常用方法.专业word可编辑......(1)裂项法把数列各项拆成两项或多项之和,使之出现成对互为相反数的项.如:是公差为的等差数列,求(2)错位相减法若为等差数列,为等比数列,求数列(差比数列)前项和,可由,求,其中为的公比.如:①②①—②时,,时,(3)倒序相加法把数列的各项顺序倒写,再与原来顺序的数列相加.相加[练习]已知,则(附:a.用倒序相加法求数列的前n项和如果一个数列{an.专业word可编辑......},与首末项等距的两项之和等于首末两项之和,可采用把正着写与倒着写的两个和式相加,就得到一个常数列的
4、和,这一求和方法称为倒序相加法。我们在学知识时,不但要知其果,更要索其因,知识的得出过程是知识的源头,也是研究同一类知识的工具,例如:等差数列前n项和公式的推导,用的就是“倒序相加法”。b.用公式法求数列的前n项和对等差数列、等比数列,求前n项和Sn可直接用等差、等比数列的前n项和公式进行求解。运用公式求解的注意事项:首先要注意公式的应用范围,确定公式适用于这个数列之后,再计算。c.用裂项相消法求数列的前n项和裂项相消法是将数列的一项拆成两项或多项,使得前后项相抵消,留下有限项,从而求出数列的前n项和。d.用错位相减法求数列的前n项和
5、错位相减法是一种常用的数列求和方法,应用于等比数列与等差数列相乘的形式。即若在数列{an·bn}中,{an}成等差数列,{bn}成等比数列,在和式的两边同乘以公比,再与原式错位相减整理后即可以求出前n项和。e.用迭加法求数列的前n项和迭加法主要应用于数列{an}满足an+1=an+f(n),其中f(n)是等差数列或等比数列的条件下,可把这个式子变成an+1-an=f(n),代入各项,得到一系列式子,把所有的式子加到一起,经过整理,可求出an,从而求出Sn。f.用分组求和法求数列的前n项和所谓分组求和法就是对一类既不是等差数列,也不是等
6、比数列的数列,若将这类数列适当拆开,可分为几个等差、等比或常见的数列,然后分别求和,再将其合并。g.用构造法求数列的前n项和所谓构造法就是先根据数列的结构及特征进行分析,找出数列的通项的特征,构造出我们熟知的基本数列的通项的特征形式,从而求出数列的前n项和。.专业word可编辑.......专业word可编辑.
此文档下载收益归作者所有